Sahithyan's S1 -- Maths Complex Numbers

Introduction

Representation methods

Euler's Formula

For $x \in \mathbb{R}$:

Proof Hint

Use Taylor series for e^x , $\cos x$, $\sin x$.

Euler's Identity

One of the most beautiful equations in mathematics.

$$
e^{i\pi}+1=0
$$

Roots of Unity

 n -th roots of unity (1) are the complex numbers that satisfy the equation, $z^n = 1$. There are n distinct solutions.

$$
z=\exp\left(i\Big(\frac{2m\pi}{n}\Big)\right)\ \text{ where }\ m\in\mathbb{Z}\cup[0,n)
$$

The solution can be written as $1, w, w^2, w^3, \ldots, w^{n-1}$.

1 is called the trivial solution. Other solutions are called as primitive n -th roots.

Complex Functions

Suppose $w = f(z)$ where $z, w \in \mathbb{C}$. Input and output points are marked in 2 separate complex planes.

Here:

- \bullet D domain of f
- \bullet D' codomain of f

Image

Image of f is the set:

$$
\big\{f(z)\mid z\in D\big\}
$$

Cartesian form

$$
f(z)=u(x,y)+i\overline{v}(x,y)
$$

Here u, v are real functions.

Limits

 $\lim_{z\to z_0} f(z) = L$ iff:

$$
\forall \epsilon > 0 ~ \exists \delta > 0 ~ \forall z~ \big(0<|z-z_0|<\delta \implies |f(z)-L|<\epsilon \big)
$$

Properties

All properties mentioned in *Limits* | Real Analysis are applicable to complex limits. Additional properties are mentioned below:

Suppose $\lim f(z) = L$.

- $\lim \overline{f(z)} = \overline{L}$
- $\lim \text{Re}(f(z)) = \text{Re}(L)$
- \bullet $\lim \text{Im}(f(z)) = \text{Im}(L)$

Real and imaginary limits

Let $f(z) = u(x, y) + iv(x, y)$, $z_0 = x_0 + iy_0$, $z = x + iy$.

Suppose the real part and imaginary part limits to L_1, L_2 , which can be written as:

$$
\lim\limits_{(x,y)\rightarrow(x_0,y_0)}u(x,y)=L_1\quad \lim\limits_{(x,y)\rightarrow(x_0,y_0)}v(x,y)=L_2
$$

Then:

$\lim_{z\rightarrow z_0}f(z)=L_1+iL_2$

Difference from real functions

For real functions, when considering the limit at a point, the limit could be be approaching the point either from left or right.

For complex functions, the point can be approached along any path in the complex plane. The distance $|z-z_0|$ decreases to 0.

Notes for questions

- When 2 arbitrary paths are chosen: if the limits on each are different, then the limit DNE.
- When substituting $z = x + imx$: if m doesn't cancel out, then the limit DNE.
- In most limits, subtituting $z=re^{i\theta}$ will simplify the limit a lot.
- In very complex functions, limits can be taken for real and imaginary parts separately.

Important limits

 $\lim_{z\to 0}\frac{z}{\overline{z}}\text{ doesn't exist}$

The above limit is important as it shows up in many questions. Can be disproved by taking two paths: real, imaginary axes.

$$
\lim_{z \to 0} \frac{z\overline{z}}{z + \overline{z}}
$$
 doesn't exist

Can be proven usign taking 2 paths: real axis, $t+\sqrt{t}i.$

Continuity

 $f(z)$ is continuous at z_0 iff:

$$
\lim_{z\to z_0}f(z)=f(z_0)
$$

$$
\iff \forall \epsilon > 0 ~ \exists \delta > 0 ~ \forall x ~ \big(\left| z - z_0 \right| < \delta \implies \left| f(z) - f(z_0) \right| < \epsilon \big)
$$

Conditions

For f to be continuous on z_0 , all these conditions are required.

- f is defined at z_0
- $\lim_{z\to z_0} f(z)$ exists
- $\lim_{z\to z_0} f(z) = f(z_0)$

Properties

If f, g are continuous at z_0 , these functions are also continuous at z_0 :

- $\text{Re}(f)$
- \bullet Im(f)
- \bullet |f|
- $f \pm g$
- \bullet fg
- $\frac{f}{g}$ where $g \neq 0$
- $f(g(z))$

Differentiability

A complex function f is differentiable at z_0 iff:

$$
\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0} = L = f'(z_0)
$$

 $f'(z_0)$ is called the derivative of f at z_0 . Properties of <u>Differentiability | Real Analysis</u> can be applied to complex functions.

Singular point

A point z_0 where $f(z)$ is not differentiable.

Neighbourhood

Suppose $z_0 \in \mathbb{C}$. A neighborhood of z_0 is the region contained in the circle $|z - z_0| = r > 0$.

Analytic Functions

A function f is said to be analytic at z_0 iff it is differentiable throughout a neighbourhood of z_0 . Aka. regular functions, holomorphic functions and monogenic functions.

Examples

- Polynomial functions of z (analytic everywhere)
- Functions with a converging Taylor series for all z (analytic everywhere)
	- \circ sin z
	- \circ COS z
	- \circ e^{z}

Non-examples

Analytic implies differentiable

f is analytic at $z_0 \implies f$ is differentiable at z_0

Cauchy-Riemann Equations

Suppose f is a complex-valued function of a complex variable. If the derivatives are the same for the 2 paths —real and imaginary axes— then f is analytic.

Suppose $f(z) = u(x, y) + iv(x, y)$ for the theorems below.

The equations

The set of equations mentioned below are the Cauchy Riemann Equations, where u, v are functions of x, y .

Cartesian form

$$
\frac{\partial u}{\partial x} = u_x = \frac{\partial v}{\partial y} = v_y \quad \wedge \quad \frac{\partial u}{\partial y} = u_y = -\frac{\partial v}{\partial x} = -v_x
$$

Polar form

Here the partial derivatives are about r, θ .

$$
u_r=\frac{1}{r}v_\theta \quad \wedge \quad v_r=-\frac{1}{r}u_\theta
$$

Complex form

$$
f_x=-if_y
$$

Theorem 1

If f is differentiable at z_0 , then

- All partial derivatives u_x, u_y, v_x, v_y exist and
- They satisfy the Cauchy Riemann equations

$$
f^{\prime}(z_0)=u_x(x_0,y_0)+iv_x(x_0,y_0)
$$

Note

Contrapositive is useful when proving f is not differentiable at z_0 .

Theorem 2

If:

- All partial derivatives u_x, u_y, v_x, v_y exist and
- They satisfy Cauchy-Riemann equations **and**
- They are continuous at z_0

Then:

• f is differentiable at z_0 and

$$
f^{\prime}(z_0)=u_x(x_0,y_0)+iv_x(x_0,y_0)
$$

Theorem 3

If f is analytic at z_0 , then its first-order partial derivatives are continuous in a neighbourhood of z_0 .

Entire Functions

A complex function that is differentiable everywhere. Which implies that they are analytic everywhere.

Examples:

- polynomial functions
- \cdot sin z, cos z, e^z

Non-examples:

• Rational functions

