Sahithyan's S1 – Maths Complex Numbers

Introduction

Representation methods

Euler's Formula

For $x \in \mathbb{R}$:

(i) Proof Hint

Use <u>Taylor series</u> for e^x , $\cos x$, $\sin x$.

Euler's Identity

One of the most beautiful equations in mathematics.

$$e^{i\pi}+1=0$$

Roots of Unity

n-th roots of unity (1) are the complex numbers that satisfy the equation, $z^n = 1$. There are n distinct solutions.

$$z = \exp\left(i\Big(rac{2m\pi}{n}\Big)
ight) ~~ ext{where}~~m\in\mathbb{Z}\cup[0,n)$$

The solution can be written as $1, w, w^2, w^3, \ldots, w^{n-1}$.

1 is called the trivial solution. Other solutions are called as primitive n-th roots.

Complex Functions

Suppose w = f(z) where $z, w \in \mathbb{C}$. Input and output points are marked in 2 separate complex planes.

Here:

- D domain of f
- D' codomain of f

Image

Image of \boldsymbol{f} is the set:

$$ig\{f(z)\mid z\in Dig\}$$

Cartesian form

$$f(z) = u(x,y) + iv(x,y)$$

Here u, v are real functions.

Limits

 $\lim_{z
ightarrow z_0}f(z)=L$ iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall z \; ig(0 < |z-z_0| < \delta \implies |f(z)-L| < \epsilon ig)$$

Properties

All properties mentioned in <u>Limits | Real Analysis</u> are applicable to complex limits. Additional properties are mentioned below:

Suppose $\lim f(z) = L$.

- $\lim \overline{f(z)} = \overline{L}$
- $\lim \operatorname{Re}(f(z)) = \operatorname{Re}(L)$
- $\lim \operatorname{Im}(f(z)) = \operatorname{Im}(L)$

Real and imaginary limits

Let f(z) = u(x,y) + iv(x,y), $z_0 = x_0 + iy_0$, z = x + iy.

Suppose the real part and imaginary part limits to L_1, L_2 , which can be written as:

$$\lim_{(x,y) o (x_0,y_0)} u(x,y) = L_1 \quad \lim_{(x,y) o (x_0,y_0)} v(x,y) = L_2$$

Then:

$$\lim_{z o z_0} f(z) = L_1 + iL_2$$

Difference from real functions

For real functions, when considering the limit at a point, the limit could be be approaching the point either from left or right.

For complex functions, the point can be approached along any path in the complex plane. The distance $|z - z_0|$ decreases to 0.

Notes for questions

- When 2 arbitrary paths are chosen: if the limits on each are different, then the limit DNE.
- When substituting z = x + imx: if m doesn't cancel out, then the limit DNE.
- In most limits, subtituting $z = re^{i\theta}$ will simplify the limit a lot.
- In very complex functions, limits can be taken for real and imaginary parts separately.

Important limits

 $\lim_{z\to 0} \frac{z}{\overline{z}} \text{ doesn't exist}$

The above limit is important as it shows up in many questions. Can be disproved by taking two paths: real, imaginary axes.

$$\lim_{z\to 0} \frac{z\overline{z}}{z+\overline{z}} \text{ doesn't exist}$$

Can be proven usign taking 2 paths: real axis, $t+\sqrt{t}i$.

Continuity

f(z) is continuous at z_0 iff:

$$\lim_{z
ightarrow z_0}f(z)=f(z_0)$$

$$\iff orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; ig(|z-z_0| < \delta \implies |f(z)-f(z_0)| < \epsilon ig)$$

Conditions

For f to be continuous on z_0 , all these conditions are required.

- f is defined at z_0
- $\lim_{z \to z_0} f(z)$ exists
- $\lim_{z o z_0} f(z) = f(z_0)$

Properties

If f, g are continuous at z_0 , these functions are also continuous at z_0 :

- $\operatorname{Re}(f)$
- $\operatorname{Im}(f)$
- |*f*|
- $f \pm g$
- *fg*
- $rac{f}{g}$ where g
 eq 0
- f(g(z))

Differentiability

A complex function f is differentiable at z_0 iff:

$$\lim_{z o z_0} rac{f(z) - f(z_0)}{z - z_0} = L = f'(z_0)$$

 $f'(z_0)$ is called the derivative of f at z_0 . Properties of <u>Differentiability | Real Analysis</u> can be applied to complex functions.

Singular point

A point z_0 where f(z) is not differentiable.

Neighbourhood

Suppose $z_0 \in \mathbb{C}$. A neighborhood of z_0 is the region contained in the circle $|z-z_0|=r>0$.

Analytic Functions

A function f is said to be analytic at z_0 iff it is differentiable throughout a neighbourhood of z_0 . Aka. regular functions, holomorphic functions and monogenic functions.

Examples

- Polynomial functions of z (analytic everywhere)
- Functions with a converging Taylor series for all z (analytic everywhere)
 - $\circ \sin z$
 - $\circ \cos z$
 - *e^z*

Non-examples

Function	Note
$ z ^2$	Differentiable only at $z=0.$
\overline{z}	Nowhere differentiable. Derivative taken on the real and imaginary axes are different.
$\operatorname{Re}(z)$	Similar to above.
$z+\overline{z}$	Similar to above.
$\operatorname{Im}(z)$	Similar to above.
$z-\overline{z}$	Similar to above.

Analytic implies differentiable

 $f ext{ is analytic at } z_0 \implies f ext{ is differentiable at } z_0$

Cauchy-Riemann Equations

Suppose f is a complex-valued function of a complex variable. If the derivatives are the same for the 2 paths —real and imaginary axes — then f is analytic.

Suppose f(z) = u(x,y) + iv(x,y) for the theorems below.

The equations

The set of equations mentioned below are the Cauchy Riemann Equations, where u, v are functions of x, y.

Cartesian form

$$rac{\partial u}{\partial x} = u_x = rac{\partial v}{\partial y} = v_y \quad \wedge \quad rac{\partial u}{\partial y} = u_y = -rac{\partial v}{\partial x} = -v_x$$

Polar form

Here the partial derivatives are about r, heta.

$$u_r = rac{1}{r} v_ heta \quad \wedge \quad v_r = -rac{1}{r} u_ heta$$

Complex form

$$f_x=-if_y$$

Theorem 1

If f is differentiable at z_0 , then

- All partial derivatives u_x, u_y, v_x, v_y exist and
- They satisfy the Cauchy Riemann equations

$$f'(z_0) = u_x(x_0,y_0) + i v_x(x_0,y_0)$$

(i) Note

Contrapositive is useful when proving f is **not** differentiable at z_0 .

Theorem 2

lf:

- All partial derivatives $\, u_x, u_y, v_x, v_y \,$ exist and
- They satisfy Cauchy-Riemann equations and
- They are continuous at $\,z_0\,$

Then:

• f is differentiable at z_0 and

$$f^{\prime}(z_{0})=u_{x}(x_{0},y_{0})+iv_{x}(x_{0},y_{0})$$

Theorem 3

If f is analytic at z_0 , then its first-order partial derivatives are continuous in a neighbourhood of z_0 .

Entire Functions

A complex function that is differentiable everywhere. Which implies that they are analytic everywhere.

Examples:

- polynomial functions
- $\sin z, \cos z, e^z$

Non-examples:

• Rational functions

