
Sahithyan's S1 -- Maths

Matrices

Introduction

Revise Matrices unit from G.C.E. (A/L) Combined Mathematics and G.C.E. (O/L) Mathematics.

Types of matrices

Zero matrix / Null matrix

All elements are . 

Column matrix (column vector)

Only  column. 

Row matrix (row vector)

Only  row. 

Square matrix

Number of columns equal to number of rows.

Main diagonals of a square matrix

Formed by elements having equal subscripts.

Triangular matrix

Upper triangular matrix

All elements below the main diagonal are . Subset of square matrices. 

Lower triangular matrix

All elements above the main diagonal are . Subset of square matrices. 
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Diagonal matrix

A square matrix whose with non-zero elements only on the main diagonal. Denoted by . Subset of

upper and lower triangular matrices. 

Identity matrix

Aka. unit matrix. A diagonal matrix and all diagonal elements are . Denoted by . Subset of diagonal

matrices.

Matrix operations

Addition and subtraction

Order of the 2 matrices must be same. Matrix obtained by adding or subtracting corresponding

elements.

Scalar multiplication

Matrix obtained by multiplying all elements by the scalar.

Matrix Multiplication

Suppose  and . Matrix multiplication is only defined when  here.

Note

Generally 

Properties of matrix multiplication

 matrices must be chosen so that below-mentioned products are defined. 
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���Associative: 

���Right distributive over addition: 

���Left distributive over addition: 

���

Transpose

Matrix obtained from a given matrix by interchanging its rows and columns. Denoted with a

superscript T, like . 

Properties

Distributive over addition: 

Spectrum of  is equal to the spectrum of 

More Types of Matrices

Symmetric matrix

If . Subset of square matrices. 

Skew Symmetric matrix

If . Subset of square matrices. All elements in main diagonal are .

Note

Any square matrix can be expressed as a sum of a symmetric matrix and a skew-symmetric

matrix.

Complex conjucate of a matrix

Suppose . Complex conjucate matrix of  is: 
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Hermitian matrix

A square matrix  is said to be a Hermitian matrix iff .

Skew Hermitian matrix

A square matrix  is said to be a Hermitian matrix iff .

Note

Any square matrix can be expressed as a sum of a hermitian matrix and a skew-hermitian matrix.

Determinant

Defined only for square matrices. Denoted by . 

For 2x2

For higher order

Minor of an element

Suppose . 

Minor of an element , is the matrix obtained by deleting  row and  column of . Denoted by

.

Co-factor of an element

Suppose . 

Co-factor of an element , is defined as (commonly denoted as ):
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Definition

If  then the determinant of  is defined by:

For some . 

Properties of determinants

Every element of a row or column of a matrix is  then the value of its determinant is .

If 2 columns or 2 rows of a matrix are identical then its determinant is .

If A and B are two square matrices then .

The value of the determinant of a matrix remains unchanged if a scalar multiple of a row or column

is added to any other row or column.

If a matrix  is obtained from a square matrix  by an interchange of two columns or rows:

.

If every entry in any row or column is multiplied by , then the whole determinant is multiplied by

.

Composition

In relation with eigenvalues

For a  matrix A with  number of eigenvalues:
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Adjoint

Suppose . 

Where  is the co-factor of .

Properties

Suppose  is a  matrix.

Note

For a  matrix, .

Inverse

Suppose  and  are square matrices of the same order. If  then  is called the

inverse of  and is denoted by .

Singular or Non-singular

A square matrix is singular iff . Otherwise its non-singular or invertible. 

Properties of Inverse
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Elementary Transformations

Interchange of any columns or rows

Addition of multiple of any row or column to any other row or column

Multiplication of each element of a column or a row by a non-zero constant

When a matrix  is obtained by applying elementary transformations to a matrix , then  is

equivalent to . Denoted by .

Theorem

The elementary row operations that reduce a given matrix  to the identity matrix, also transform

the identity matrix to the inverse of .

Augmented Matrix

Two matrices are written as a single matrix with a vertical line in-between. Denoted by .

Example: 

Inverse using elementary row transformations

Let  be a square matrix with order .

Start with 

Repeatedly perform row transformations (not column) to both matrices until the  becomes

an identity matrix.

Transform all elements outside the main diagonal to .

Transform elements on the main diagonal to  by multiplying by a constant.

 is .

TODO

What about singular matrices?
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Echelon Form

A matrix is in row echelon form (or just “echelon” form) iff:

All rows having only zero entries are at the bottom.

For all row that does not contain entirely zeros, the first non-zero entry is 1.

For 2 successive non-zero rows, the leading 1 in the higher row is further left than the leading 1 in the

lower row.

The process of reducing the augmented matrix to row Echelon form is known as Gaussian

elimination.

Column echelon form

A matrix  is in column echelon form if  is in row echelon form.

System of Linear Equations

Any system of linear equations can be represented in matrix notation as shown below.

2 types based on : 

: Homogeneous system

: Non-homogeneous system

Number of solutions

A system of equations can have 0 or 1 or infinitely many solutions.
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Consistent

When the system of equations has at least 1 solution.

Inconsistent

When the system of equations has no solution.

Rank

Number of non-zero rows of row echelon form of a matrix . Denoted by .

Note

 is always true. 

Solutions of Homogenous Systems

Consider the system:

A homogenous system is consistent, because  is always a solution. 

Solution of Non-homogenous Systems

Consider the system: . 
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Methods

Method 1: Direct approach

Used when coefficient matrix  is invertible. It means the system has a unique set of solutions. 

Method 2: Cramer’s Rule

Let , where  is the coefficient matrix and .

Where  is the matrix obtained by replacing th column in matrix  by .

Method 3: Reducing to Echelon Form

Start with . Convert the  to echelon form. The solution can be found easily. If a

contradiction is encountered while solving the equation, then the system has no solutions.

Eigenvalues & Eigenvectors

Definitions

Characteristic Polynomial

Let  be a  matrix.

Eigenvalues

Roots of the equation  are the eigenvalues of .
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Note

Product of the eigenvalues is equal to the determinant of the matrix

Sum of the eigenvalues is equal to the trace of a matrix

If  is an eigenvalue of , then  is an eigenvalue of 

 and  have the same eigenvalues.

Eigenvectors

The column vectors satisfying the equation . 

Normalized eigenvectors

An eigenvector with the magnitude (norm) of . Normalizing factor  of any eigenvector is:

Norm

Norm of a column or row matrix  is denoted by  and defined as:

Algebraic Multiplicity

If the characteristic polynomial consists of a factor of the form  and  is not a

factor of the characteristic polynomial then  is the algebraic multiplicity of the eigenvalue .

Spectrum

Set of all eigenvalues.

Spectral Radius
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Linear Independence of Eigenvectors

Suppose  is a set of eigenvectors.  is a set of scalars.

All those eigenvectors are independent iff:

For special matrices

Real symmetric matrix

Suppose  is a symmetric matrix with all real entries. Then: 

The eigenvalues of  are all real: 

The eigenvectors of  (corresponding to distinct values of ) are mutually orthogonal

 and  have the same eigenvalues

Upper triangular matrix

The eigenvalues are the diagonal entries.

Orthogonal

Consider 2 column matrices  and :

Product

The product of  and  is defined as:

Orthogonal vectors

 and  are orthogonal iff .

From Sahithyan's S1

https://s1.sahithyan.dev


For a set of  column vectors, they are orthogonal iff they are pairwise orthogonal. That is: 

Note

 are orthogonal  are linearly independent.

Converse is not true.

Orthogonal matrix

For a square matrix  with real entries, it is orthogonal iff .

A matrix is orthogonal iff sum of the squared elements of any row or column is . 

Properties

 is invertible, non-singular

 are orthogonal

It is diagonalizable over  (may not be, over )

Product of 2 orthogonal matrices of the same order is also an orthogonal matrix

The columns or rows of an orthogonal matrix form an orthogonal set of vectors

Orthonormal

For a set of  column vectors, they are orthonormal iff: 

They are pairwise orthogonal AND

For all  column vectors their norm is  

Trace

Suppose  is an square matrix. Trace of  is the sum of the diagonal entries.
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Trace is also equal to the sum of eigenvalues.

Diagonalization
Similar matrices

2 square matrices  and  of the same order, are similar iff there exists an invertible matrix  such

that:

Properties

Similarity of 2 matrices is commutative.

Similar matrices have the set of eigenvalues.

If  and  are similar, then  and  are similar.

Definition

A matrix  is diagonalizable if it is similar to a diagonal matrix. 

Here:

 is a diagonal matrix

 is an invertible matrix

Steps

Find eigenvalues of : 

Find corresponding eigenvectors: 

Construct  by joining the eigenvectors as columns
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Note

The matrix  differs based on the order of the eigenvectors, and hence is not unique. 

Real symmetric matrix

Suppose  is a real symmetric matrix . If it has distinct eigenvalues then it has  mutually

orthogonal linearly-independent eigenvectors.

Hence the diagonalizing matrix  (formed by using the normalized eigenvectors) is an

orthogonal matrix. 

Uses

Finding integer powers

Suppose  is diagonalizable, and .

Cayley-Hamilton Theorem

If  is the characteristic polynomial of the matrix , then 

Uses

Easily compute the inverse of a matrix

Easily express higher powers of a matrix in terms of its lower powers

Matrix Norms

Let . A norm of  is denoted by .
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Definitions

Suppose  for all the definitions below.

1-norm

Maximum of the absolute column sums.

2-norm

Square root of the sum of all elements squared. Aka. Euclidean norm, or Frobenius norm. Defined for

non-square matrices as well.

Infinity norm

Maximum of the absolute row sums.

Note

For any matrix : 

Vector norm

Norm defined for column vectors.
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Induced norm

Aka. operator norm, subordinate norm.

Suppose . The induced norm is defined for  with respect to a given norm, . 

Properties of Norms

Works for all types of norms.

Suppose  are  ordered.

���

���

���

���  (triangle inequality)

���

Unit Ball

A unit ball in  with respect to a norm .

Unit disc

When , unit ball is also called the unit disc. 
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