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Riemann Integration

Introduction

Interval

Let . Length of the interval .

Disjoint interval

When 2 intervals don’t share any common numbers.

Almost disjoint interval

When 2 intervals are disjoint or intersect only at a common endpoint.

Riemann Integral

Let  is a bounded function on a closed, bounded (compact) interval. 

Riemann integral of  is: 

Definite integral

When  are constants. 

Indefinite integral

When  is a constant but  is replaced with .

Partition

Let  be a non-empty, compact interval (closed and bounded). A partition of  is a finite collection

 of almost disjoint, non-empty, compact sub-intervals whose union is .
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A partition is determined by the endpoints of all sub-intervals: . 

A partition can be denoted by:

its intervals - 

the endpoints of its intervals - 

Riemann Sum

Let

 is a bounded function on the compact interval  with 

and .

Upper riemann sum

Lower riemann sum

 

When  are any 2 partitions of : 

Refinements

 is called a refinement of   and  are partitions of  and .

In that case:
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If  and  are partitions of , then  is a refinement of both  and .

Upper & Lower integral

Let  be the set of all possible partitions of the interval .

Upper Integral

Lower Integral

For a bounded function , always 

Riemann Integrable

A bounded function  is Riemann integrable on  iff . In that case,

the Riemann integral of  on  is denoted by:

Reimann Integrable or not

Function Yes or No? How?

Unbounded No By definition

Constant Yes
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Function Yes or No? How?

Monotonically

increasing/decreasing

Yes Take a partition such that

Continuous Yes Take a partition such that

Cauchy Criterion

Theorem

A bounded function  is Riemann integrable iff for every  there exists a partition

 of , such that:

Proof Hint

To prove : consider  and 

To prove : consider  and 

Note

 is integrable on  when:

The set of points of discontinuity of a bounded function  is finite.

The set of points of discontinuity of a bounded function  is finite number of limit points. (may

have infinite number of discontinuities)

In these cases, the discontinuities don’t affect the result of the integration.

Theorems on Integrability

Theorem 1

Suppose  is bounded, and integrable on  for all . Then  is integrable on

. Also valid for the other end.
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Proof Hint

Isolate a partition on the required end.

Choose  or  such that  where  is an upper or lower bound.

Theorem 2

Suppose  is bounded, and continuous on  for all . Then  is integrable

on . Also valid for the other end.
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Todo

Add proof hint. :::

Properties of Integrals

Suppose  and  are integrable on .

Flipping the range

Addition

 will be integrable on .

Converse is not true.

Proof Hint

Prove  is integrable using:

Start with  and show 

Start with  and show 

Constant multiplication

Suppose .  will be integrable .
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Converse is not true.

Proof Hint

Prove for . Use 

Prove for 

Using the above results, proof for  is apparent

Bounds

If  on :

If  on :

Modulus

 will be integrable on .

Proof Hint

Start with . And integrate both sides. 

Multiple

 will be integrable on . Converse is not true.
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Proof Hint

Suppose  is bounded by 

Prove  is integrable (Use )

 is integrable because:

Max, Min

 and  are integrable.

Where  and  functions are defined as:

Additivity

 is Riemann integrable on  where .

Proof Hint

: Use Cauchy criterion after defining these:

: Use cauchy criterion on  separately and then combine using a union

partition

After the integrability is proven,
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Proof Hint

���Let  be a partition on  and  be a partition on . And .

���Prove the below using Cauchy criteria:

���Prove the below using Cauchy criteria (by considering RHS):

Sequential Characterization of Integrability

A bounded function  is Riemann integrable iff  a sequence of partitions, such

that:

In that case:
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Proof Hint

Cauchy criteria and squeeze theorem is used for both side proof.

For : 

Consider the limit definition.

Prove  is Riemann integrable on  by Cauchy criteria.

Use squeeze theorem for  to prove limit of

upper sum

Prove limit of lower sum using the limit of upper sum

For : Consider the below, where .

Theorem

Suppose  is Riemann integrable on .

where . 

Proof Hint

Intermediate Value Theorem for Integrals

Suppose  is a continuous function on . Then :
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Proof

Suppose  and .

When :  is a constant function. Proof is trivial.

Otherwise:

Then there exists . 

Generlized IVT

Suppose  are continuous functions on  and . Then :

Proof Hint

Consider this and proof is similar to IVT.

Converging Functions

Convergence of functions is introduced in Sequence of Functions | Real Analysis.
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Uniform Convergence Theorem

Let  be a sequence of Riemann integrable functions on . Suppose  converges to 

uniformly. Then  is Riemann integrable on  and :

and:

Proof Hint

Consider  in place of .

Consider Cauchy criteria for .

Prove  is Riemann integrable using Cauchy criteria.

 is Riemann integrable as .

When  converges to  pointwise, it is not certain whether  is Riemann integrable or not. An

example where  is not Riemann integrable:

Here  is the enumeration of rational numbers in .

Dominated Convergence Theorem

Let  be a sequence of Riemann integrable functions on . Suppose  converges to 

pointwise where  is Riemann integrable on . If :
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Monotone Convergence Theorem

Let  be a sequence of Riemann integrable functions on , and they are monotone (all

increasing or decreasing, like ). Suppose  converges to  pointwise where  is

Riemann integrable on . If :

Can be proven from the dominated convergence theorem.

Fundamental Theorem of Calculus

Theorem I

If  is continuous on  that is differentiable on  and if  is integrable on  then

Proof Hint

Consider a general partition and use Mean Value Theorem on each parition.

Integration by parts

Suppose  are continuous functions on  that are differentiable on . If  and  are

Riemann integrable on :

Proof Hint

Consider  and use FTC I. 
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Theorem II

Suppose  is an Riemann integrable function on . For .

 is uniformly continuous on 

 is continuous at  is differentiable and 

Proof Hint

For the first point:

Consider 2 points in the interval  such that 

Show 

For the second point: Consider the continuity definition of  and prove is quite trivial. 

Theorem

Suppose  is Riemann integrable on an open interval  containing the values of differentiable

functions . Then:

Proof Hint

Can be done using FTC I and II. Proof is quite trivial.
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Theorem - Change of Variable

Suppose  is a differentiable function on an open interval  such that  is continuous. Let  be an

open interval such that .

If  is continuous on , then  is continuous on  and:

Improper Riemann Integrals

Iniitally Riemann integrals are defined only for bounded functions defined on a set of compact

intervals.

Type 1

A function that is not integrable at one endpoint of the interval.

Suppose  is integrable on .

Can be similarly defined on the other endpoint. The above integral converges iff the limit exists and

finite. Otherwise diverges.

Type 2

A function defined on unbounded interval (including ). 

Suppose  is integrable on .

Can be similarly defined on the other endpoint. The above integral converges iff the limit exists and

finite. Otherwise diverges.
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Type 3

A function that is undefined at finite number of points. The integral can be split into multiple integrals

of type 1. Similarly integrals from  to  can be defined.

Note

The integral can be split into multiple integrals only when all those integrals exist.

Convergence of improper integrals is similar to the convergence of series.

Absolute convergence test

Common integrals

The above integrals converge iff  is in the integrating (open) interval. Converges to  in that case.

Both of the above integrals converges. Direct comparison test can be used.

For the 1st integral,  can be used

For the 2nd integral,  can be used

Gamma function

Defined as below for : 
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Aka. Eulerian integral of the second kind.

Convergence

 is convergent iff .

Proof Hint

Direct comparison test is used. Proved in 3 cases:

Case 1: for positive integer  

Consider the lemma 2’s limit definition

Take 

Use the convergence of 

Case 2: for  non-integers 

Use 

Use 

 is converging from case 1

Case 3: for . 

Proof is similar to case 1

But  is an improper

Prove that it is also converging

Properties

Proofs are required for each property mentioned below.

 can be extrapolated from  (see below for explanation)

, where  is a rational number (other than integers and half of any integer), cannot be

expressed in a closed form value.
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Extension of gamma function

 function can be extended for negative non-integers using: 

This cannot be used to define  because of the denominator. And through induction,  function

cannot be defined for negative integers.

Lemmas

Lemma 1

Lemma 2

Transformations

Alternate forms of . This section is intended to be exam-focused. Proofs for the transformations

are included in a separate section. 

Form 0, 1, 4

For : 

Form 0 (definition) is resulted when setting . Form 1 is resulted when setting . 
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Form 2

Form 3

Transformations Proofs

Form 1

: 

Proof Hint

Use . 

Note

One of the most frequently used integrals in mathematics:

Form 2
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Proof Hint

Use . 

Form 3

Proof Hint

Use . If the given integral’s range is from  to  and there is , it’s better to try this

substitution.

Form 4

For : 

Proof Hint

Use . 

Beta function

Beta function is defined as below, for : 

Aka. Eulerian integral of the first kind.
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Note

For , the beta function is divergent. 

Properties

Symmetrical

From the definition:

Proof Hint

Use . 

Relation with gamma function

. 

Transformations

This section is intended to be exam-focused. Proofs for the transformations are included in a

separate section.

Form 0, 6

Form 0 (definition) is derived by setting  and , .
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Form 1, 3

Form 1 is derived by setting . 

Form 2

Form 4

Form 5, 7

Form 5 is derived by setting . 

Transformations Proofs

Form 1

Proof Hint

Use  in the definition. 
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Form 2

Proof Hint

Use  in Form 1. 

Form 3

Proof Hint

Use  in Form 1. 

Form 4

Proof Hint

Use  in Form 3. 

Form 5
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Proof Hint

Use the substituition in the definition.

Form 6

Proof Hint

Use  in the definition. 

Form 7
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