Sahithyan's S1 – Maths Riemann Integration

Introduction

Interval

Let I = [a, b]. Length of the interval |I| = b - a.

Disjoint interval

When 2 intervals don't share any common numbers.

Almost disjoint interval

When 2 intervals are disjoint or intersect only at a common endpoint.

Riemann Integral

Let $f-[a,b]
ightarrow\mathbb{R}$ is a bounded function on a closed, bounded (compact) interval.

 $\int_{a}^{b} f$

Riemann integral of f is:

Definite integral

When a, b are constants.

Indefinite integral

When a is a constant but b is replaced with x.

Partition

Let I be a non-empty, compact interval (closed and bounded). A partition of I is a finite collection $\{I_1, I_2, \ldots, I_n\}$ of almost disjoint, non-empty, compact sub-intervals whose union is I.

A partition is determined by the endpoints of all sub-intervals: $a = x_0 < x_1 < \cdots < x_n = b$.

A partition can be denoted by:

- its intervals $P = \{I_1, I_2, \dots, I_n\}$
- the endpoints of its intervals $P=\{x_0,x_1,\ldots,x_n\}$

Riemann Sum

Let

- $f:\,[a,b] o \mathbb{R}$ is a bounded function on the compact interval I=[a,b] with $M=\sup_I f$ and $m=\inf_I f$.
- $P = \{I_1, I_2, ..., I_n\}$
- $\bullet \ \ M_k = \sup_{I_k} f = \sup \left\{ f(x) : x \in [x_{k-1}, x_k] \right\}$
- $\bullet \ \ m_k = \inf_{I_k} f = \inf \left\{ f(x) : x \in [x_{k-1}, x_k] \right\}$

Upper riemann sum

$$U(f;P) = \sum_{k=1}^n M_k |I_k|$$

Lower riemann sum

$$L(f;P) = \sum_{k=1}^n m_k |I_k|$$

 $m_k < M_k \implies L(f;P) \le U(f;P)$

When P_1, P_2 are any 2 partitions of $I: L(f;P_1) \leq U(f;P_2)$

Refinements

Q is called a refinement of $P\iff P$ and Q are partitions of [a,b] and $P\subseteq Q$.

In that case:

$$L(f;P) \leq L(f;Q) \leq U(f;Q) \leq U(f;P)$$

If P_1 and P_2 are partitions of [a,b], then $Q=P_1\cup P_2$ is a refinement of both P_1 and P_2 .

Upper & Lower integral

Let \mathbb{P} be the set of all possible partitions of the interval [a, b].

Upper Integral

$$U(f) = \inf \left\{ U(f;P); P \in \mathbb{P}
ight\} = \overline{\int_a^b f}$$

Lower Integral

$$L(f) = \sup \left\{ L(f;P); P \in \mathbb{P}
ight\} = {\displaystyle \int_{a}^{b} f}$$

For a bounded function f, always $L(f) \leq U(f)$

Riemann Integrable

A bounded function $f:[a,b] \to \mathbb{R}$ is Riemann integrable on [a,b] iff U(f) = L(f). In that case, the Riemann integral of f on [a,b] is denoted by:

$$\int_a^b f(x)\,\mathrm{d}x$$

Reimann Integrable or not

Function	Yes or No?	How?
Unbounded	No	By definition
Constant	Yes	$orall P\left(ext{any partition} ight) \; L(f;P) = U(f;P)$

Function	Yes or No?	How?
Monotonically increasing/decreasing	Yes	Take a partition such that $\Delta x < \delta = rac{\epsilon}{f(b)-f(a)}$
Continuous	Yes	Take a partition such that $\Delta x < \delta = rac{\epsilon}{2(b-a)}$

Cauchy Criterion

Theorem

A bounded function $f:[a,b] \to R$ is Riemann integrable iff for every $\epsilon > 0$ there exists a partition P_{ϵ} of [a,b], such that:

$$U(f,P\epsilon)-L(f,P\epsilon)\leq\epsilon$$

(i) Proof Hint

- To prove \implies : consider $L(f) rac{\epsilon}{2} < L(f;P)$ and $U(f;P) < U(f) + rac{\epsilon}{2}$
- To prove \iff : consider L(f;P) < L(f) and U(f) < U(f;P)

(i) Note

 $f:[a,b]
ightarrow \mathbb{R}$ is integrable on [a,b] when:

- The set of points of discontinuity of a bounded function $\,f\,$ is finite.
- The set of points of discontinuity of a bounded function f is finite number of limit points. (may have infinite number of discontinuities)

In these cases, the discontinuities don't affect the result of the integration.

Theorems on Integrability

Theorem 1

Suppose $f: [a, b] \to \mathbb{R}$ is bounded, and integrable on [c, b] for all $c \in (a, b)$. Then f is integrable on [a, b]. Also valid for the other end.

- Isolate a partition on the required end.
- Choose x_1 or x_{n-1} such that $\Delta x < rac{\epsilon}{4M}$ where M is an upper or lower bound.

Theorem 2

Suppose $f : [a, b] \to \mathbb{R}$ is bounded, and continuous on [c, b] for all $c \in (a, b)$. Then f is integrable on [a, b]. Also valid for the other end.

\land Todo

Add proof hint. :::

Properties of Integrals

Suppose f and g are integrable on [a, b].

Flipping the range

$$\int_a^b f = -\int_b^a f$$

Addition

f + g will be integrable on [a, b].

$$\int_a^b (f\pm g) = \int_a^b f\pm \int_a^b g$$

Converse is **not** true.

i Proof Hint

• Prove f+g is integrable using:

$$\circ ~ \sup(f+g) \leq \sup(f) + \sup(g)$$

$$\circ \ \inf(f+g) \geq \inf(f) + \inf(g)$$

- Start with U(f+g) and show $U(f+g) \leq U(f) + U(g)$
- Start with L(f+g) and show $L(f+g) \geq L(f) + L(g)$

Constant multiplication

Suppose $k \in \mathbb{R}$. kf will be integrable [a, b].

$$\int_a^b kf = k \int_a^b f$$

Converse is **not** true.

(i) Proof Hint

- Prove for $\,k\geq 0\,.\,$ Use $\,U-L<rac{\epsilon}{k}$
- Prove for $\,k=-1\,$
- Using the above results, proof for $\,k < 0\,$ is apparent

Bounds

If $m \leq f(x) \leq M$ on [a,b]:

$$m(b-a) \leq \int_a^b f \leq M(b-a)$$

If $f(x) \leq g(x)$ on [a,b]:

Modulus

|f| will be integrable on [a, b].

(i) Proof Hint

Start with $-|f| \leq f \leq |f|$. And integrate both sides.

Multiple

fg will be integrable on [a,b]. Converse is **not** true.

i Proof Hint

- Suppose ${\it f}$ is bounded by ${\it k}$
- Prove f^2 is integrable (Use $rac{\epsilon}{2k}$)
- fg is integrable because:

$$fg=rac{1}{2}ig[(f+g)^2-f^2-g^2ig]$$

Max, Min

 $\max(f,g)$ and $\min(f,g)$ are integrable.

Where \max and \min functions are defined as:

$$\max(f,g) = \frac{1}{2}(|f-g| + f + g)$$

 $\min(f,g) = \frac{1}{2}(-|f-g| + f + g)$

Additivity

 $\iff f$ is Riemann integrable on [a,c] and [c,b] where $c\in(a,b).$

(i) Proof Hint

• \implies : Use Cauchy criterion after defining these:

$$\circ P' = \{c\} \cap P$$

$$\circ \ Q = P' \cap [a,c]$$

$$\circ \ R = P' \cap [c,b]$$

• \Leftarrow : Use cauchy criterion on [a,c], [c,b] separately and then combine using a union partition

After the integrability is proven,

$$\int_a^b f = \int_a^c f + \int_c^b f$$

- 1. Let $\,Q\,$ be a partition on $\,[a,c]\,$ and $\,R\,$ be a partition on $\,[c,b]\,.\,$ And $\,P=Q\cap R\,.\,$
- 2. Prove the below using Cauchy criteria:

$$\int_a^b f < L(f;P) + \epsilon \quad \Longrightarrow \quad \int_a^b f \leq \int_a^c f + \int_c^b f$$

3. Prove the below using Cauchy criteria (by considering RHS):

$$\int_a^c f + \int_c^b f \leq \int_a^b f$$

Sequential Characterization of Integrability

A bounded function $f:[a,b] o \mathbb{R}$ is Riemann integrable iff $\exists\,\{P_n\}$ a sequence of partitions, such that:

$$\lim_{n o\infty} \left[U(f;P_n) - L(f;P_n)
ight] = 0$$

In that case:

$$\int_a^b f = \lim_{n o \infty} U(f;P_n) = \lim_{n o \infty} L(f;P_n)$$

i Proof Hint

Cauchy criteria and squeeze theorem is used for both side proof.

For \Leftarrow :

- Consider the limit definition.
- Prove f is Riemann integrable on P_n by Cauchy criteria.
- Use squeeze theorem for $\, U(f;P_n) U(f) \leq U(f;P_n) L(f;P_n)\,$ to prove limit of upper sum
- Prove limit of lower sum using the limit of upper sum

For \implies : Consider the below, where $n \in \mathbb{N}$.

$$0\leq U(f;P_n)-L(f;L_n)\leq rac{1}{n}$$

Theorem

Suppose f is Riemann integrable on [a, b].

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall P \left(|P| < \delta \implies \left| \int_a^b f - \sum_{j=1}^n f(\zeta_j) I_j
ight| < \epsilon
ight)$$

where $\zeta_j \in [x_{j-1}, x_j], j=1,2,\cdots,n.$

(i) Proof Hint

$$\underline{\int_a^b f} - \epsilon \ < \ L(f;P) \ \le \ \sum_{j=1}^n f(\zeta_j) I_j \ \le \ U(f;P) \ < \ \overline{\int_a^b f} + \epsilon$$

Intermediate Value Theorem for Integrals

Suppose f is a continuous function on [a,b]. Then $\exists x \in (a,b)$:

$$f(x)=rac{1}{b-a}\int_a^b f$$

Proof

Suppose $f_{\max} = M = f(x_0)$ and $f_{\min} = m = f(y_0)$.

When M = m: f is a constant function. Proof is trivial.

Otherwise:

$$m(b-a) \leq \int_a^b f \leq M(b-a)$$

Then there exists $x\in (x_0,y_0).$

Generlized IVT

Suppose f,g are continuous functions on [a,b] and $g\geq 0.$ Then $\exists x\in (a,b)$:

$$f(x)\int_a^b g=\int_a^b fg$$

(i) Proof Hint

Consider this and proof is similar to IVT.

$$mg \leq fg \leq Mg$$

Converging Functions

Convergence of functions is introduced in <u>Sequence of Functions | Real Analysis</u>.

Uniform Convergence Theorem

Let f_n be a sequence of Riemann integrable functions on [a, b]. Suppose f_n converges to funiformly. Then f is Riemann integrable on [a, b] and $\forall x \in [a, b]$:

$$\int_a^x f_n(x) \,\mathrm{d}x ext{ converges to } \int_a^x f(x) \,\mathrm{d}x ext{ uniformly}$$

and:

$$\lim_{n o\infty}\int_a^b f_n(x)\,\mathrm{d}x = \int_a^b \lim_{n o\infty} f_n(x)\,\mathrm{d}x = \int_a^b f(x)\,\mathrm{d}x$$

(i) Proof Hint

- Consider $\frac{\epsilon}{2(b-a)}$ in place of ϵ .
- Consider Cauchy criteria for $\,f_N\,.$
- Prove $f-f_N$ is Riemann integrable using Cauchy criteria.
- f is Riemann integrable as $f=f_N+(f-f_N)$.

When f_n converges to f pointwise, it is not certain whether f is Riemann integrable or not. An example where f is not Riemann integrable:

$$\lim_{n o \infty} u_n = \left\{egin{array}{cc} 1 & x = q_k ext{ where } k \leq n \ 0 & ext{otherwise} \end{array}
ight.$$

Here q_k is the enumeration of rational numbers in [0, 1].

Dominated Convergence Theorem

Let f_n be a sequence of Riemann integrable functions on [a, b]. Suppose f_n converges to fpointwise where f is Riemann integrable on [a, b]. If $\exists M > 0 \ \forall n \ \forall x \in [a, b] \text{ s.t. } |f_n(x)| \leq M$:

$$\lim_{n o\infty}\int_a^b f_n(x)\,\mathrm{d}x = \int_a^b f(x)\,\mathrm{d}x$$

Monotone Convergence Theorem

Let f_n be a sequence of Riemann integrable functions on [a, b], and they are monotone (all increasing or decreasing, like $f_1 \leq f_2 \cdots \leq f_n$). Suppose f_n converges to f pointwise where f is Riemann integrable on [a, b]. If $\exists M > 0 \ \forall n \ \forall x \in [a, b] \text{ s.t. } |f_n(x)| \leq M$:

$$\lim_{n o\infty}\int_a^b f_n(x)\,\mathrm{d}x = \int_a^b f(x)\,\mathrm{d}x$$

Can be proven from the dominated convergence theorem.

Fundamental Theorem of Calculus

Theorem I

If g is continuous on [a, b] that is differentiable on (a, b) and if g' is integrable on [a, b] then

$$\int_a^b g' = g(b) - g(a)$$

(i) Proof Hint

Consider a general partition and use <u>Mean Value Theorem</u> on each parition.

Integration by parts

Suppose u, v are continuous functions on [a, b] that are differentiable on (a, b). If u' and v' are Riemann integrable on [a, b]:

$$\int_a^b u(x)v'(x)\,\mathrm{d}x + \int_a^b u'(x)v(x)\,\mathrm{d}x = u(b)v(b) - u(a)v(a)$$

(i) Proof Hint

Consider g = uv and use <u>FTC I</u>.

Theorem II

Suppose f is an Riemann integrable function on [a,b]. For $x\in(a,b)$.

$$F(x) = \int_a^x f(t) \,\mathrm{d}t$$

- F(x) is uniformly continuous on [a,b]
- f is continuous at $x_0 \in (a,b) \implies F$ is differentiable and $F'(x_0) = f(x_0)$

(i) Proof Hint

For the first point:

- Consider 2 points in the interval $\, x, y \, (>x) \,$ such that $\, |x-y| < \delta = rac{\epsilon}{M} \,$
- Show $|F(y)-F(x)|\leq\epsilon$

For the second point: Consider the continuity definition of $m{f}$ and prove is quite trivial.

$$\left|rac{F(x)-F(x_0)}{x-x_0}-f(x_0)
ight|<\epsilon$$

Theorem

Suppose f is Riemann integrable on an open interval I containing the values of differentiable functions a, b. Then:

$$rac{\mathrm{d}}{\mathrm{d}x}\int_{a(x)}^{b(x)}f(t)\,\mathrm{d}t=f(b(x))b'(x)-f(a(x))a'(x)$$

i Proof Hint

Can be done using FTC I and II. Proof is quite trivial.

Theorem - Change of Variable

Suppose u is a differentiable function on an open interval J such that u' is continuous. Let I be an open interval such that $\forall x \in J, \ u(x) \in I$.

If f is continuous on I, then $f \circ u$ is continuous on J and:

$$\int_a^b (f\circ u)(x)\, u'(x)\,\mathrm{d}x = \int_{u(a)}^{u(b)} f(u)\,\mathrm{d}u$$

Improper Riemann Integrals

Iniitally Riemann integrals are defined only for **bounded** functions defined on a set of **compact** intervals.

Type 1

A function that is **not** integrable at one endpoint of the interval.

Suppose
$$f:(a,b] o \mathbb{R}$$
 is integrable on $[c,b]$ $orall c\in (a,b).$ $\int_a^b f=\lim_{\epsilon o 0}\;\int_{a+\epsilon}^b f$

Can be similarly defined on the other endpoint. The above integral converges iff the limit exists and finite. Otherwise diverges.

Type 2

A function defined on unbounded interval (including ∞).

Suppose $f:[a,\infty) o\mathbb{R}$ is integrable on [a,r]orall r>a.

$$\int_a^\infty f = \lim_{r o \infty} \; \int_a^r f$$

Can be similarly defined on the other endpoint. The above integral converges **iff** the limit exists and finite. Otherwise diverges.

Туре 3

A function that is undefined at finite number of points. The integral can be split into multiple integrals of type 1. Similarly integrals from $-\infty$ to ∞ can be defined.

(i) Note

The integral can be split into multiple integrals only when all those integrals exist.

Convergence of improper integrals is similar to the convergence of series.

Absolute convergence test

$$\int_a^b |f| ext{ converges } \Longrightarrow \int_a^b f ext{ converges }$$

Common integrals

$$\int_0^1 \frac{1}{x^p} \, \mathrm{d}x \qquad \int_1^\infty \frac{1}{x^p} \, \mathrm{d}x$$

The above integrals converge iff p is in the integrating (open) interval. Converges to $\frac{1}{p-1}$ in that case.

$$\int_0^1 \frac{\sin^2 x}{x^2} \,\mathrm{d}x \qquad \int_1^\infty \frac{\sin^2 x}{x^2} \,\mathrm{d}x$$

Both of the above integrals converges. Direct comparison test can be used.

- For the 1st integral, $\sqrt{x^{-1}}$ can be used
- For the 2nd integral, $\,x^{-2}\,$ can be used

Gamma function

Defined as below for n > 0:

$$\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} \,\mathrm{d}x$$

Convergence

 $\Gamma(n)$ is convergent iff n>0.

(i) Proof Hint

Direct comparison test is used. Proved in 3 cases: • Case 1: for positive integer n• Consider the lemma 2's limit definition • Take $\epsilon = 1$ • Use the convergence of $\int_0^\infty e^{-x/2} dx$ • Case 2: for n > 1 non-integers • Use $\lfloor n \rfloor < n < \lfloor n \rfloor + 1$ • Use $x^{y-1}e^{-x} \le x^{\lfloor n \rfloor}e^{-x}$ • $\Gamma(\lfloor n \rfloor + 1)$ is converging from case 1 • Case 3: for 0 < n < 1. • Proof is similar to case 1 • But $\int_0^N e^{-x}x^{n-1} dx$ is an improper • Prove that it is also converging

Properties

Proofs are required for each property mentioned below.

- $\Gamma(1) = 1$
- $\Gamma(n+1) = n\Gamma(n)$
- $\Gamma(n+1) = n!$
- $\Gamma(n)\Gamma(1-n)=\pi\csc(\pi x)$
- $\Gamma(rac{n}{2})$ can be extrapolated from $\Gamma(rac{1}{2})=\sqrt{\pi}$ (see below for explanation)
- $\Gamma(k)$, where k is a rational number (other than integers and half of any integer), cannot be expressed in a closed form value.

Extension of gamma function

 $\Gamma(n)$ function can be extended for negative non-integers using:

$$\Gamma(n) = rac{\Gamma(n+1)}{n}$$

This cannot be used to define $\Gamma(0)$ because of the denominator. And through induction, Γ function cannot be defined for negative integers.

Lemmas

Lemma 1

$$orall s>0 \ \int_0^\infty e^{-sx}\,\mathrm{d}x ext{ converges}$$

Lemma 2

$$orall n\in \mathbb{Z}^+ \ \lim_{x o\infty} rac{x^{n-1}}{e^{x/2}}=0$$

Transformations

Alternate forms of $\Gamma(n)$. This section is intended to be exam-focused. Proofs for the transformations are included in a separate section.

Form 0, 1, 4

For $k \in \mathbb{R}$:

$$\Gamma(n)=k\int_0^\infty e^{-x^k}x^{kn-1}\,\mathrm{d}x$$

Form 0 (definition) is resulted when setting k=1. Form 1 is resulted when setting $k=rac{1}{n}$.

Form 2

$$\int_0^\infty e^{-kx} x^{n-1} \,\mathrm{d}x = rac{\Gamma(n)}{k^n}$$

Form 3

$$\Gamma(n) = \int_0^1 \left(\lnrac{1}{x}
ight)^{n-1} \mathrm{d}x$$

Transformations Proofs

Form 1

 $\forall n > 0$:

 $\Gamma(n) = \frac{1}{n} \int_0^\infty e^{-x^{1/n}} dx$ (i) Proof Hint $Use x^n = t.$ (j) Note

One of the most frequently used integrals in mathematics:

e

$$\int_0^\infty e^{-x^2}\,\mathrm{d}x=rac{\sqrt{\pi}}{2}$$

Form 2

$$\int_0^\infty e^{-kx} x^{n-1} \,\mathrm{d}x = rac{\Gamma(n)}{k^n}$$

(i) Proof Hint

Use x = kt.

Form 3

$$\Gamma(n) = \int_0^1 \left(\lnrac{1}{x}
ight)^{n-1} \mathrm{d}x$$

(i) Proof Hint

Use $e^{-x} = t$. If the given integral's range is from 0 to 1 and there is \ln , it's better to try this substitution.

Form 4

For $k \in \mathbb{R}$:

Beta function

Beta function is defined as below, for m, n > 0:

$$B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} \, \mathrm{d} x$$

Aka. Eulerian integral of the first kind.

For $m,n\leq 0$, the beta function is divergent.

Properties

Symmetrical

From the definition:

B(m,n) = B(n,m)

(i) Proof Hint

Use t = 1 - x.

Relation with gamma function

 $\forall m, n > 0.$

$$B(m,n)=rac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$

Transformations

This section is intended to be exam-focused. <u>Proofs for the transformations</u> are included in a separate section.

Form 0, 6

$$\int_a^b (x-a)^{m-1} (b-x)^{n-1} \, \mathrm{d}x = (b-a)^{m+n-1} B(m,n)$$

Form 0 (definition) is derived by setting a=0 and b=1, .

Form 1, 3

$$\int_0^\infty rac{x^{m-1}}{(ax+b)^{m+n}}\,\mathrm{d}x = rac{B(m,n)}{a^m b^n}$$

Form 1 is derived by setting a = b = 1.

Form 2

$$B(m,n) = \int_0^1 rac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} \, \mathrm{d}x$$

Form 4

$$\int_{0}^{rac{\pi}{2}}rac{\sin^{2m-1}(x)\cos^{2n-1}(x)}{(a\sin^{2}x+b\cos^{2}x)^{m+n}}\,\mathrm{d}x=rac{B(m,n)}{2a^{m}b^{n}}$$

Form 5, 7

$$\int_0^1 rac{x^{m-1}(1-x)^{n-1}}{(a+bx)^{m+n}} \,\mathrm{d}x = rac{B(m,n)}{a^n(a+b)^m}$$

Form 5 is derived by setting b=1.

Transformations Proofs

Form 1

$$B(m,n) = \int_0^\infty rac{x^{n-1}}{(x+1)^{m+n}} \, \mathrm{d}x = \int_0^\infty rac{x^{m-1}}{(x+1)^{m+n}} \, \mathrm{d}x$$

(i) Proof Hint

Use $x = rac{1}{1+t}$ in the definition.

$$B(m,n) = \int_0^1 rac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} \, \mathrm{d}x$$

Form 3

$$\int_0^\infty rac{x^{m-1}}{(ax+b)^{m+n}}\,\mathrm{d}x = rac{B(m,n)}{a^m b^n}$$

Form 5

$$\int_0^1 rac{x^{m-1}(1-x)^{n-1}}{(x+a)^{m+n}} \,\mathrm{d}x = rac{B(m,n)}{a^n(1+a)^m}$$

(i) Proof Hint

Use the substituition in the definition.

$$x=rac{t(1+a)}{t+a}$$

Form 6

$$\int_a^b (x-a)^{m-1}(b-x)^{n-1}\,\mathrm{d}x = (b-a)^{m+n-1}B(m,n)$$

(i) Proof Hint

Use x = at + b(1-t) in the definition.

Form 7

$$\int_0^1 \frac{x^{m-1}(1-x)^{n-1}}{(a+(b-a)x)^{m+n}} \, \mathrm{d}x = \frac{B(m,n)}{a^n b^m}$$
$$\int_0^1 \frac{x^{m-1}(1-x)^{n-1}}{(a+bx)^{m+n}} \, \mathrm{d}x = \frac{B(m,n)}{a^n (a+b)^m}$$

AA