Vectors

Introduction

Revise Vectors unit from G.C.E (A/L) Combined Mathematics.

Direction Cosines

Suppose $\vec{p} = a\underline{i} + b\underline{j} + c\underline{k}$. Direction cosines of p are $\cos \alpha$, $\cos \beta$, $\cos \gamma$ where α , β , γ are the angles p makes with x, y, z axes.

Unit vector in the direction of $\vec{p} = \underline{i} \cos \alpha + \underline{j} \cos \beta + \underline{k} \cos \gamma$. Because of this:

$$\cos^2 lpha + \cos^2 eta + \cos^2 \gamma = 1$$

Direction Ratio

Ratio of the direction cosines is called as direction ratio.

 $\cos \alpha : \cos \beta : \cos \gamma$

Cross Product

$$a imes b = |a||b|sin(heta)n = egin{bmatrix} rac{i}{a_x} & rac{j}{a_y} & rac{k}{a_z}\ b_x & b_y & b_z \end{bmatrix}$$

n is the **unit normal vector** to *a* and *b*. Direction is based on the right hand rule.

 $a imes b = 0 \implies |a| = 0 \vee |b| = 0 \lor a \parallel b$

Cross products between i, j, k are circular.

Properties

- $a \times a = 0$
- $(a \times b) = -(b \times a)$
- $a \times (b+c) = (a \times b) + (a \times c)$
- Area of a parallelogram $ABCD = |ec{AB} imes ec{AD}|$

Scalar Triple Product

$$[a,b,c] = a \cdot (b imes c) = egin{bmatrix} a_x & a_y & a_z \ b_x & b_y & b_z \ c_x & c_y & c_z \end{bmatrix}$$

Properties

- $[a,b,c] = a \cdot (b \times c) = (a \times b) \cdot c$
- [a,b,c] = [b,c,a] = [c,a,b] = -[a,c,b]
- Swapping any 2 vectors will negate the product.
- $\left[a,b,c
 ight]=0$ iff a , b , c are coplanar.
- Volume of a parallelepiped with a , b , c as adjacent edges = [a,b,c]
- Volume of a tetrahedron with a , b , c as adjacent edges = $rac{1}{6}[a,b,c]$

Vector Triple Product

$$a imes (b imes c) = (a \cdot c)b - (a \cdot b)c$$

Resulting vector lies in the plane that contains b and c.

Section Formula

Suppose ${f R}$ divides the line segment ${f PQ}$ in the ratio m:n (both are positive and $m\geq n$), the division can either be internal or external.

Internally

Internal section

$$\overrightarrow{\mathrm{OR}} = rac{m\overrightarrow{\mathrm{OQ}} + n\overrightarrow{\mathrm{OP}}}{m+n}$$

Externally

$$\overrightarrow{\mathrm{OR}} = rac{m\overrightarrow{\mathrm{OQ}} - n\overrightarrow{\mathrm{OP}}}{m-n}$$

Straight Lines

Passes through a point & parallel to a vector

Equation for a line that:

- passes through $\, \underline{r_0} = \langle x_0, y_0, z_0
 angle \,$
- is parallel to $\, \underline{v} = a \underline{i} + b \underline{j} + c \underline{k} \,$

Parametric equation

$$\underline{r}=r_{0}+t\underline{v};\;t\in\mathbb{R}$$

Symmetric equation

$$rac{x-x_0}{a}=rac{y-y_0}{b}=rac{z-z_0}{c}$$

Passes through 2 points

Equation of a line passes through $A = (x_1, y_1, z_1)$, $B = (x_2, y_2, z_2)$. $\underline{r_A}$ and $\underline{r_B}$ are the position vectors of A and B.

Parametric equation

$$\underline{r}=(1-t)\underline{r_A}+t\underline{r_B};\ t\in\mathbb{R}$$
 $rac{x-x_1}{x_2-x_1}=rac{y-y_1}{y_2-y_1}=rac{z-z_1}{z_2-z_1}$

Symmetric equation

Intersection

To show that two straight lines intersect in 3D space, existence of a point which satisfies both lines must be proven.

It is **not** enough to show that the cross product of their parallel vectors is non-zero.

Normal to 2 lines

Let α, β be two lines.

$$lpha: rac{x-x_1}{a_1} = rac{y-y_1}{b_1} = rac{z-z_1}{c_1}; \;\; eta: rac{x-x_2}{a_2} = rac{y-y_2}{b_2} = rac{z-z_2}{c_2}$$

Here $v_1=\langle a_1,b_1,c_1
angle$, $v_2=\langle a_2,b_2,c_2
angle$ are 2 vectors parallel to lpha,eta respectively.

Normal to both lines: $v_1 imes v_2$.

$$rac{v_1 imes v_2}{|v_1 imes v_2|}$$

Angle between 2 straight lines

Using the α, β lines mentioned above:

$$\cos\theta = \frac{v_1 \cdot v_1}{|v_1| \cdot |v_2|} = \frac{(a_1\underline{i} + b_1\underline{j} + c_1\underline{k}) \cdot (a_2\underline{i} + b_2\underline{j} + c_2\underline{k})}{|a_1\underline{i} + b_1\underline{j} + c_1\underline{k}| \cdot |a_2\underline{i} + b_2\underline{j} + c_2\underline{k}|}$$

Here v_1, v_2 are 2 vectors parallel to lpha, eta respectively.

Shortest distance from a point

The distance can be calculated using Pythogoras' theorem.

$$d^2 = \left| {\underline{r}} - {\underline{p}}
ight|^2 - \left[{{\underline{n} \cdot \left({\underline{r}} - {\underline{p}}
ight)} \over {\left| {\underline{n}}
ight|}}
ight]^2$$

Here:

- P is the arbitrary point
- p is the position vector of $\,P\,$
- \underline{r} is the position vector of a point on the line
- \underline{n} is parallel to the line

Planes

Equation of planes can expressed in either vector or cartesian form. Vector equation is the one containing only vectors. Cartesian equation is in the form: Ax + By + Cz = D.

Contains a point and parallel to 2 vectors

Suppose a plane:

- is parallel to both $\, \underline{a} \,$ and $\, \underline{b} \,$ where $\, a imes b
 eq 0 \,$
- contains $\underline{r_0} = x_0 \underline{i} + y_0 \underline{j} + z_0 \underline{k}$

Equation for the plane is:

$$\underline{r}=r_{0}+s\underline{a}+t\underline{b}\ ;\ s,t\in\mathbb{R}$$

Contains a point and normal is given

Suppose a plane:

- contains $\underline{r_0} = x_0 \underline{i} + y_0 \underline{j} + z_0 \underline{k}$
- has a normal \underline{n}

Equation for the plane is:

$$(\underline{r}-r_0)\cdot \underline{n}=0$$

Contains 3 points

Suppose a plane contains r_0, r_1, r_2 ($\underline{r_0}, \underline{r_1}, \underline{r_2}$ are the position vectors of respectively).

$$(\underline{r} - \underline{r_1}) \cdot \left[(\underline{r_1} - \underline{r_0}) \times (\underline{r_1} - \underline{r_2}) \right] = 0$$

Normal to a plane

Suppose ax + by + cz = d is a plane. $\underline{n} = a\underline{i} + b\underline{j} + c\underline{k}$ is a normal to the plane.

Angle between 2 planes

Consider the two planes:

- $A: a_1x + a_2y + a_3z = d$
- $B: b_1x + b_2y + b_3z = d'$

The angle between the planes ϕ is given by:

$$\cos(\phi) = rac{n_A \cdot n_B}{|n_A| \cdot |n_B|} = rac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}}$$

Here n_A, n_B are normal to the planes A, B.

Shortest distance from a point

Consider the plane ax + by + cz = d.

$$ext{distance} = rac{\left| (\underline{r_1} - \underline{r_0}) \cdot \underline{n}
ight|}{\left| \underline{n}
ight|}$$

- \underline{n} is a normal to the plane
- r_0 is the position vector of any known point on the plane
- $\overline{r_1}$ is the position vector to the arbitrary point

Intersection

In 3D, to prove 2 planes intersect, it has to be proven that there is a point satisfiying both of the planes.

Of 2 planes

Can either be a:

- Plane when the planes coincicde
- Line otherwise

Equation of the line of intersection can be found by:

- Solving y, z with respect to x
- Subject $\,x\,$ and symmetric form can be found

Of 3 planes

Can either be a:

- Plane when the planes coincide
- Line when the lines of intersection between the planes pairwise coincide
- Point otherwise

First pairwise intersection of the planes must be found. And then intersection of those 2 can be found.

Skew Lines

Two non-parallel lines in 3D-space that do not intersect.

Normal to 2 skew lines

Similar to Normal to 2 lines — Straight Lines.

Distance between 2 skew lines

$$\text{distance} = |\overrightarrow{AB} \cdot \underline{n}|$$

Here

- \underline{n} is the unit normal to both $\,l_1,l_2$
- A and B are points lying on each line

