Summary | Vectors

Introduction

Revise Vectors unit from G.C.E (A/L) Combined Mathematics.

Cross Product

$$
a\times b=|a||b|sin(\theta)n=\det\begin{pmatrix} i&j&k\\ a_x&a_y&a_z\\ b_x&b_y&b_z\end{pmatrix}
$$

 n is the **unit normal vector** to a and b . Direction is based on the right hand rule.

$$
a\times b = 0 \implies |a| = 0 \vee |b| = 0 \vee a \parallel b
$$

Cross products between i , j , k are circular.

Note

Area of a parallelogram ABCD = $|\vec{AB} \times \vec{AD}|$.

Scalar Triple Product

$$
[a,b,c]=a\cdot (b\times c)=\det \begin{pmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{pmatrix}
$$

$$
[a,b,c]=a\cdot (b\times c)=(a\times b)\cdot c
$$

$$
[a,b,c]=[b,c,a]=[c,b,a]
$$

 $[a, b, c] = 0$ iff a, b, c are coplanar.

Note

Volume of a parallelepiped with a, b, c as adjacent edges = $[a, b, c]$ Volume of a tetrahedron with a, b, c as adjacent edges = $\frac{1}{6}[a, b, c]$

Vector Triple Product

$$
a\times (b\times c)=(a\cdot c)b-(a\cdot b)c
$$

Vector Equation of Straight Lines

Line that passes through the point r_0 and parallel to \underline{v}

Here $r_0 = (x_0, y_0, z_0)$ and $\underline{v} = a\underline{i} + b\underline{j} + c\underline{k}$

Parametric equation

$$
\underline{r}=r_0+t\underline{v};\;t\in\mathbb{R}
$$

Symmetric equation

$$
\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}
$$

Line that passes through the point A and B

Here $A = (x_1, y_1, z_1)$, $B = (x_2, y_2, z_2)$. r_A and r_B are the position vectors of A and B

Parametric equation

.

$$
\underline{r}=(1-t)\underline{r_A}+t\underline{r_B};\;t\in\mathbb{R}
$$

Symmetric equation

$$
\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}
$$

Note

To show that two straight lines intersect in 3D space, it is **not** enough to show that the cross product of their parallel vectors is non-zero.

Existence of a point which satisfies both lines must be proven.

Angle between two straight lines

Let $\alpha: \frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$, $\beta: \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$ be two lines.

$$
cos\theta = \dfrac{(a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}) \cdot (a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k})}{|a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}| |a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k}|}
$$

Vector Equation of Planes

Plane that contains a point r_0 and is parallel to both \underline{a} and \underline{b}

Here $r_0 = x_0 \underline{i} + y_0 j + z_0 \underline{k}$.

$$
\underline{r}=r_0+s\underline{a}+t\underline{b}\;;\;s,t\in\mathbb{R}
$$

Plane that contains a point r_0 and \underline{n} is a normal

Here $r_0 = x_0 \underline{i} + y_0 \underline{j} + z_0 \underline{k}$.

$$
(\underline{r}-r_0)\cdot \underline{n}=0
$$

Plane that contains 3 points r_0, r_1, r_2

Here r_0, r_1, r_2 are the position vectors of r_0, r_1, r_2 respectively.

$$
(\underline{r}-\underline{r_1})\cdot\left[(\underline{r_1}-\underline{r_0})\times(\underline{r_1}-\underline{r_2})\right]=0
$$

Normal to a plane

Suppose $ax + by + cz = d$ is a plane.

 $i\frac{n}{\mu} = a\underline{i} + b\underline{j} + c\underline{k}$ is a normal to the plane.

Angle between 2 planes

Consider the two planes:

- $A: a_1x + a_2y + a_3z = d$
- $B : b_1x + b_2y + b_3z = d'$

The angle between the planes ϕ is:

$$
cos(\phi) = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}}
$$

Shortest distance to a point

Considering a plane $ax + by + cz = d$.

$$
\text{distance} = \frac{|(\underline{r_1}-\underline{r_0})\cdot \underline{n}|}{|\underline{n}|}
$$

- \cdot \overline{n} is a normal to the plane
- \cdot r_0 is the position vector of a point on the plane
- \cdot r_1 is the position vector to the arbitrary point

Skew Lines

Two non-parallel lines in a 3-space that do not intersect.

Normal to 2 skew lines

Let l_1, l_2 be 2 skew lines.

$$
l_1: \frac{x-x_0}{a_0} = \frac{y-y_0}{b_0} = \frac{z-z_0}{c_0} \; ; \; \; l_2: \frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}
$$

The normal to both lines \underline{n} is:

$$
\underline{n}=\frac{\langle a_0,b_0,c_0\rangle\times\langle a_1,b_1,c_1\rangle}{|\langle a_0,b_0,c_0\rangle\times\langle a_1,b_1,c_1\rangle|}
$$

Distance between 2 skew lines

$$
\text{distance} = |\overrightarrow{AB} \cdot \underline{n}|
$$

Here

- \underline{n} is the normal to both l_1, l_2
- \boldsymbol{A} and \boldsymbol{B} are points lying on each line

This PDF is saved from https://s1.sahithyan.dev