Summary | Complex Numbers

Introduction

Representation methods

The methods are:

- Cartesian representation: $z = x + iy$
- Polar representation: $z = pe^{i\theta}$

Here:

- $x = p \cos \theta$ real part
- $y = p \sin \theta$ imaginary part
- $p = \sqrt{x^2 + y^2}$ modulus
- $\theta = \tan^{-1}\left(\frac{y}{x}\right)$ arg angle

Euler's Formula

For $x \in \mathbb{R}$:

$$
e^{ix}=\cos x+i\sin x
$$

$$
\begin{aligned}\n\text{Use power series for } e^x, \text{cos } x, \text{ sin } x. \\
e^x &= \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \\
\text{sin } x &= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \\
\cos x &= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\n\end{aligned}
$$

Euler's Identity

One of the most beautiful equations in mathematics.

$$
e^{i\pi}+1=0
$$

Complex Functions

Suppose $w=f(z)$ where $z,w\in\mathbb{C}$. Input and output points are denoted in 2 separate complex planes.

Here:

- D domain of f
- D' codomain of f

Image

Image of f is the set:

$$
\big\{f(z)\mid z\in D\big\}
$$

Cartesian form

$$
f(z)=u(x,y)+\overline{iv(x,y)}
$$

Here

 u, v

are real functions.

Limit of Complex Functions

 $\lim_{z\to z_0} f(z) = L$ iff:

$$
\forall \epsilon > 0 \; \exists \delta > 0 \; \forall z \; (0 < |z-z_0| < \delta \implies |f(z)-L| < \epsilon)
$$

Complex limit properties are similar to real limits.

Difference from real functions

For real functions, when considering the limit at a point, we could approach the point either from the left or from the right.

For complex functions, the point can be approached along any path in the complex plane. The distance $|z-z_0|$ decreases to 0 .

Real and imaginary limits

Suppose $f(z)=u(x,y)+iv(x,y)$, $\lim_{z\to z_0}u(x,y)=L_1$ and $\lim_{z\to z_0}v(x,y)=L_2$, where $z_0=x_0+iy_0$ and $z=x+iy$. Then $\lim\, f(z)=L_1+iL_2.$

Continuity

 $f(z)$ is continuous at z_0 iff:

$$
\lim_{z\to z_0}f(z)=f(z_0)
$$

$$
\iff \forall \epsilon > 0 ~ \exists \delta > 0 ~ \forall x ~ (|z-z_0|< \delta \implies |f(z)-f(z_0)|< \epsilon)
$$

Differentiability

A complex function f is differentiable at z_0 iff:

$$
\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0} = L = f'(z_0)
$$

 $f'(z_0)$ is called the derivative of f at z_0 . The rules for differentiation in real functions can also be applied to complex functions. So, go through Differentiability - Real Analysis.

Singular point

If $f(z)$ is not differentiable at z_0 then z_0 is called a singular point of $f(z)$.

Neighbourhood

Suppose $z_0 \in \mathbb{C}$. A neighborhood of z_0 is the region contained in the circle $|z - z_0| = r > 0$.

Analytic

A function f is said to be analytic at z_0 iff it is differentiable throughout a neighbourhood of z_0 .

Analytic implies differentiable

f is analytic at $z_0 \implies f$ is differentiable at z_0

Cauchy Riemann Equations

The set of equations mentioned below are the Cauchy Riemann Equations, where u, v are functions of x, y .

$$
\frac{\partial u}{\partial x} = u_x = \frac{\partial v}{\partial y} = v_y \quad \wedge \quad \frac{\partial u}{\partial y} = u_y = -\frac{\partial v}{\partial x} = -v_x
$$

Theorem 1

Suppose $f(z) = u(x, y) + iv(x, y)$, and f is differentiable at z_0 . Then

- All partial derivatives u_x, u_y, v_x, v_y exist
- They satisfy the Cauchy Riemann equations

$$
f^{\prime}(z_0)=u_x(x_0,y_0)+iv_x(x_0,y_0)
$$

Note

Contrapositive is useful when proving f is **not** differentiable at z_0 .

Theorem 2

Suppose $f(z) = u(x,y) + iv(x,y)$. All partial derivatives exist, and they are all continuous at z_0 . Then f is differentiable at z_0 . And:

$$
f^{\prime}(z_0)=u_x(x_0,y_0)+iv_x(x_0,y_0)
$$

Theorem 3

If f is analytic at z_0 , then its first-order partial derivatives are continuous in a neighbourhood of z_0 .

Entire Functions

A complex function that is differentiable everywhere. Entire functions are analytic everywhere.

Examples:

- polynomial functions
- $\cdot e^z$

Counter examples:

• Rational functions are not entire functions

This PDF is saved from https://s1.sahithyan.dev