Summary | Real Analysis

Introduction— |

 $| \land | and | | \lor | or | | \rightarrow | then | | \implies | implies | | \Leftarrow | implied by | | \iff | if and only if | | \forall | for all | | \exists | there exists | | ~ | not |$

Let's take a
ightarrow b.

- 1. Contrapositive or transposition: $\sim b
 ightarrow \sim a$. This is equivalent to the original.
- 2. Inverse: $\sim a
 ightarrow \sim b$. Does not depend on the original.
- 3. Converse: b
 ightarrow a . Does not depend on the original.

 $a
ightarrow b \equiv \sim a ee b \equiv \sim b
ightarrow \sim a$

Examples

- $\cdot ~~ \sim orall x P(x) \equiv \exists x \sim P(x)$
- $\sim \exists x P(x) \equiv \forall x \sim P(x)$
- $\exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$
- $\forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y)$
- $\cdot \ \exists x \forall y P(x,y) \implies \forall y \exists x P(x,y)$
- $\boldsymbol{\cdot} \hspace{0.2cm} (A \rightarrow C) \wedge (B \rightarrow C) \equiv (A \lor B) \rightarrow C$

Methods of proofs

- 1. Just proof what should be proven
- 2. Prove the contrapositive
- 3. Proof by contradiction
- 4. Proof by induction

Proof by contradiction

Suppose $a \implies b$ has to be proven. If $a \land \sim b$ is proven to be false, then, by proof by contradiction, $a \implies b$ can be trivially proven.

Logic behind proof by contradiction

Set theory

Zermelo-Fraenkel set theory with axiom of Choice(ZFC):9 axioms all together is being used here.

Definitions

$$\begin{array}{l} \cdot \ x \in A^{\mathrm{c}} \iff x \notin A \\ \cdot \ x \in A \cup B \iff x \in A \lor x \in B \\ \cdot \ x \in A \cap B \iff x \in A \land x \in B \\ \cdot \ A \subset B = \forall x (x \in A \implies x \in B) \\ \cdot \ A - B = A \cap B^{\mathrm{c}} \\ \cdot \ A = B \iff ((\forall z \in A \implies z \in B) \land (\forall z \in B \implies z \in A)) \end{array}$$

Required proofs

- $(A\cap B)^{\mathrm{c}}=A^{\mathrm{c}}\cup B^{\mathrm{c}}$
- $(A\cup B)^{\mathrm{c}}=A^{\mathrm{c}}\cap B^{\mathrm{c}}$
- $\bullet \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $\bullet \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $A \subset A \cup B$
- $\cdot \ A \cap B \subset A$

Set of Numbers

Sets of numbers

- Positive integers: $\mathbb{Z}^+ = \{1, 2, 3, 4, \dots\}$.
- Natural integers: $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$.
- Negative integers: $\mathbb{Z}^- = \{-1, -2, -3, -4, \dots\}$.
- Integers: $\mathbb{Z}=\mathbb{Z}^-\cup\{0\}\cup\mathbb{Z}^+$.
- Rational numbers: $\mathbb{Q}=\left\{ rac{p}{q} \Big| q
 eq 0 \wedge p,q\in\mathbb{Z}
 ight\}$.
- Irrational numbers: limits of sequences of rational numbers (which are not rational numbers)
- Real numbers: $\mathbb{R} = \mathbb{Q}^c \cup \mathbb{Q}$.

Complex numbers are not part of the study here.

Continued Fraction Expansion

The process

- Separate the integer part
- Find the inverse of the remaining part. Result will be greated than 1.
- Repeat the process for the remaining part.

Finite expansion

Take $\frac{420}{69}$ for example.

$$\frac{420}{69} = 6 + \frac{6}{69}$$
$$\frac{420}{69} = 6 + \frac{1}{\frac{69}{6}}$$
$$\frac{420}{69} = 6 + \frac{1}{11 + \frac{3}{6}}$$

$$rac{420}{69}=6+rac{1}{11+rac{1}{2}}$$

As $\frac{420}{69}$ is finite, its continued fraction expansion is also finite. And it can be written as $\frac{420}{69} = [6; 11, 2]$.

Infinite expansion

For irrational numbers, the expansion will be infinite.

For example π :

Conintued fraction expansion of π is $[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, \ldots]$.

Field Axioms

Field Axioms of ${\mathbb R}$

 $\mathbb{R}
eq \emptyset$ with two binary operations + and \cdot satisfying the following properties

- 1. Closed under addition: $\forall a, b \in \mathbb{R}; a + b \in \mathbb{R}$
- 2. Commutative: $orall a, b \in \mathbb{R}; a+b=b+a$
- 3. Associative: $orall a, b, c \in \mathbb{R}; (a+b)+c=a+(b+c)$
- 4. Additive identity: $\exists 0 \in \mathbb{R} \ orall a \in \mathbb{R}; a+0=0+a=a$
- 5. Additive inverse: $orall a \in \mathbb{R}$ $\exists (-a); a + (-a) = (-a) + a = 0$
- 6. Closed under multiplication: $orall a, b \in \mathbb{R}; a \cdot b \in \mathbb{R}$
- 7. Commutative: $\forall a, b \in \mathbb{R}; a \cdot b = b \cdot a$
- 8. Associative: $\forall a, b, c \in \mathbb{R}; (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 9. Multiplicative identity: $\exists 1 \in \mathbb{R} \ orall a \in \mathbb{R}; a \cdot 1 = 1 \cdot a = a$
- 10. Multiplicative inverse: $orall a \in \mathbb{R} \{0\} \, \exists a^-; a \cdot a^- = a^- \cdot a = 1$

11. Multiplication is distributive over addition: $a \cdot (b+c) = a \cdot b + a \cdot c$

(i) Field

Any set satisfying the above axioms with two binary operations (commonly + and \cdot) is called a **field**. Written as $(\mathbb{R}, +, \cdot)$ is a **Field**. But $(\mathbb{R}, \cdot, +)$ is not a field.

Required proofs

The below mentioned propositions can and should be proven using the abovementioned axioms. $a, b, c \in \mathbb{R}$.

•
$$a \cdot 0 = 0$$

Hint: Start with a(1+0)

- $1 \neq 0$
- Additive identity ($m{0}$) is unique
- Multiplicative identity (f 1) is unique
- Additive inverse (-a) is unique for a given $\,a$
- Multiplicative inverse (a^{-1}) is unique for a given $\,a$
- $\bullet \ a+b=0 \implies b=-a$
- $\bullet \ a+c=b+c \implies a=b$
- -(a+b) = (-a) + (-b)

•
$$-(-a) = a$$

- $\bullet \ ac = bc \implies a = b$
- $\cdot \ ab = 0 \implies a = 0 \lor b = 0$
- $\cdot \quad -(ab) = (-a)b = a(-b)$
- (-a)(-b) = ab
- $\cdot \ a \neq 0 \implies \left(a^{-1}\right)^{-1} = a$

$$m{\cdot}~~a,b
eq 0 \implies ab^{-1}=a^{-1}b^{-1}$$

Field or Not?

	Is field?	Reason (if not)
$(\mathbb{R},+,\cdot)$	True	
$(\mathbb{R},\cdot,+)$	False	Axiom 11 is invalid

	Is field?	Reason (if not)
$(\mathbb{Z},+,\cdot)$	False	Multiplicative inverse doesn't exist
$(\mathbb{Q},+,\cdot)$	True	
$(\mathbb{Q}^c,+,\cdot)$	False	$\sqrt{2}\cdot\sqrt{2} otin\mathbb{Q}^{c}$
Boolean algebra	False	Additive inverse doesn't exist
$(\{0,1\}, + ext{ mod } 2, \cdot ext{ mod } 2)$	True	
$(\{0,1,2\},+ \ \mathrm{mod}\ 3,\cdot \ \mathrm{mod}\ 3)$	True	
$(\{0,1,2,3\},+ \ \mathrm{mod}\ 4,\cdot \ \mathrm{mod}\ 4)$	False	Multiplicative inverse doesn't exist

Completeness Axiom

Let A be a non empty subset of \mathbb{R} .

- u is the upper bound of A if: $orall a \in A; a \leq u$
- $oldsymbol{A}$ is bounded above if $oldsymbol{A}$ has an upper bound
- Maximum element of $A \colon \max A = u$ if $u \in A$ and u is an upper bound of A
- Supremum of $A \; \sup A$, is the smallest upper bound of A
- Maximum is a supremum. Supremum is not necessarily a maximum.
- l is the lower bound of A if: $orall a \in A; a \geq l$
- $oldsymbol{A}$ is bounded below if $oldsymbol{A}$ has a lower bound
- Minimum element of $A\colon \min A=l$ if $l\in A$ and l is a lower bound of A
- Infimum of $A \; \inf A$, is the largest lower bound of A
- Minimum is a infimum. Infimum is not necessarily a minimum.

Theorems

Let A be a non empty subset of \mathbb{R} .

- Say u is an upper bound of A . Then $u = \sup A$ iff: $orall \epsilon > 0 \; \exists a \in A; \; a + \epsilon > u$
- Say l is a lower bound of A . Then $l = \inf A$ iff: $orall \epsilon > 0 \; \exists a \in A; \; a \epsilon < l$

Required proofs

- sup(a,b) = b
- inf(a,b) = a

Completeness axioms of real numbers

- Every non empty subset of ${\mathbb R}$ which is bounded above has a supremum in ${\mathbb R}$
- Every non empty subset of ${\mathbb R}$ which is bounded below has a infimum in ${\mathbb R}$

(i) Note

 ${\mathbb Q}$ doesn't have the completeness property.

Completeness axioms of integers

- Every non empty subset of ${\mathbb Z}$ which is bounded above has a maximum
- Every non empty subset of ${\mathbb Z}$ which is bounded below has a minimum

Two important theorems

- $\boldsymbol{\cdot} \ \exists a \ \forall \epsilon > 0, a < \epsilon \implies a \leq 0$
- $\cdot \ \, \forall \epsilon > 0 \; \exists a,a < \epsilon \not\Longrightarrow a \leq 0$

Order Axioms

- Trichotomy: $orall a, b \in \mathbb{R}$ exactly one of these holds: a > b , a = b , a < b
- Transitivity: $\forall a, b, c \in \mathbb{R}; a < b \land b < c \implies a < c$
- Operation with addition: $orall a, b \in \mathbb{R}; a < b \implies a + c < b + c$
- Operation with multiplication: $\forall a, b, c \in \mathbb{R}; a < b \land 0 < c \implies ac < bc$

Definitions

- $a < b \equiv b > a$
- $\boldsymbol{\cdot} \ a \leq b \equiv a < b \lor a = b$
- $a \neq b \equiv a < b \lor a > b$
- $egin{array}{cc} \cdot & |x| = egin{cases} x & ext{if} \ x \geq 0, \ -x & ext{if} \ x < 0 \end{cases}$

Triangular inequalities

$$|a| - |b| \le |a + b| \le |a| + |b|$$

 $||a| - |b|| \le |a + b|$

Required proofs

- $\boldsymbol{\cdot} \hspace{0.2cm} \forall a,b,c \in \mathbb{R}; a < b \wedge c < 0 \implies ac > bc$
- 1 > 0
- $-|a| \leq a \leq |a|$
- Triangular inequalities

Theorems

- $\cdot \ \exists a \ \forall \epsilon > 0, \ a < \epsilon \implies a \leq 0$
- $\boldsymbol{\cdot} \ \exists a \ \forall \epsilon > 0, \ 0 \leq a < \epsilon \implies a = 0$

(!) Caution

 $\forall \epsilon > 0 \; \exists a, \, a < \epsilon \implies a \leq 0$ is **not** valid.

Let A be a non-empty subset of $\mathbb R$ which is bounded above and has an upper bound u.

$$u = \sup A \iff orall \epsilon > 0 \, \exists a \in A, \, a > u - \epsilon$$

Let A be a non-empty subset of ${\mathbb R}$ which is bounded below and has an lower bound m.

 $m = \inf A \iff orall \epsilon > 0 \, \exists a \in A, \, a < m + \epsilon$

Relations

Definitions

- Cartesian Product of sets A,B $A imes B=\{(a,b)|a\in A,b\in B\}$
- Ordered pair $(a,b)=\{\{a\},\{a,b\}\}$

Relation

Let $A, B \neq \emptyset$. A relation $R: A \rightarrow B$ is a non-empty subset of $A \times B$.

- $a R b \equiv (a,b) \in R$
- Domain of $R \colon dom(R) = A$
- Codomain of $R \colon codom(R) = B$
- Range of $R\colon ran(R)=\{y|(x,y)\in R\}$
- $ran(R) \subseteq B$
- Pre-range of $R\colon preran(R)=\{x\,|\, (x,y)\in R\}$
- $preran(R) \subseteq A$
- $R(a) = \{b \, | \, (a,b) \in R\}$

Everywhere defined

 $oldsymbol{R}$ is everywhere defined

 $\iff A = dom(R) = preran(R) \ \iff orall a \in A, \ \exists b \in B; \ (a,b) \in R.$

Onto

 $oldsymbol{R}$ is onto

$$\iff B = codom(R) = ran(R)$$

 $\iff orall b \in B \exists a \in A (a, b) \in R$

Aka. surjection.

Inverse

Inverse of R: $R^{-1} = \{(b,a) \, | \, (a,b) \in R\}$

Types of relation

one-many

$$\iff \exists a \in A, \, \exists b_1, b_2 \in B \; ((a,b_1), (a,b_2) \in R \, \land \, b_1
eq b_2)$$

Not one-many

$$\iff orall a \in A, \, orall b_1, b_2 \in B \; ((a,b_1),(a,b_2) \in R \implies b_1 = b_2)$$

many-one

$$\iff \exists a_1,a_2 \in A, \ \exists b \in B \ ((a_1,b),(a_2,b) \in R \ \land \ a_1
eq a_2)$$

Not many-one

$$\iff orall a_1, a_2 \in A, \, orall b \in B \; ((a_1,b),(a_2,b) \in R \implies a_1 = a_2)$$

many-many

iff *R* is **one-many** and **many-one**.

one-one

iff *R* is not one-many and not many-one. Aka. injection.

Bijection

When a relation is **onto** and **one-one**.

Functions

A function $f: A \to B$ is a relation $f: A \to B$ which is <u>everywhere defined</u> and <u>not</u> <u>one-many</u>.

• dom(f) = A = preran(f)

Inverse

For a function $f: A \to B$ to have its inverse relation $f^{-1}: B \to A$ be also a function, we need:

- *f* is <u>onto</u>
- f is <u>not many-one</u> (in other words, f must be <u>one-one</u>)

The above statement is true for all unrestricted function f that has an inverse f^{-1} :

$$f(f^{-1}(x)) = x = f^{-1}(f(x)) = x$$

Composition

Composition of relations

Let $R: A \to B$ and $S: B \to C$ are 2 relations. Composition can be defined when ran(R) = preran(S).

Say ran(R) = preran(S) = D. Composition of the 2 relations is written as:

$$S \circ R = \{(a,c) \, | \, (a,b) \in R, \, (b,c) \in S, \, b \in D \}$$

Composition of functions

Let f: A
ightarrow B and g: B
ightarrow C be 2 functions where f is <u>onto</u>.

$$g\circ f = \{(x,z)\,|\,(x,y)\in f,\,(y,z)\in g,\,y\in B\} = g(f(x))$$

Countability

A set A is countable iff $\exists f: A
ightarrow Z^+$, where f is a one-one function.

Examples

- Countable: Any finite set, $\,\mathbb{Z},\mathbb{Q}\,$
- Uncountable: ${\mathbb R}$, Any open/closed intervals in ${\mathbb R}$.

Transitive property

Say $B\subset A$.

 $A ext{ is countable } \implies B ext{ is countable }$

 $B ext{ is not countable } \implies A ext{ is not countable }$

Limits

 $\lim_{x o a} f(x) = L$ iff:

 $orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (0 < |x-a| < \delta \implies |f(x)-L| < \epsilon)$

Defining δ in terms of a given ϵ is enough to prove a limit.

One sided limits

$$\begin{split} \lim_{x \to a^+} f(x) &= L \text{ iff:} \\ &\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \; (0 < x - a < \delta \implies |f(x) - L| < \epsilon) \\ &\lim_{x \to a^-} f(x) = L \text{ iff:} \\ &\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \; (-\delta < x - a < 0 \implies |f(x) - L| < \epsilon) \\ &\lim_{x \to a} f(x) = L^+ \text{ iff:} \\ &\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \; (0 < |x - a| < \delta \implies 0 \le f(x) - L < \epsilon) \\ &\lim_{x \to a} f(x) = L^- \text{ iff:} \\ &\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \; (0 < |x - a| < \delta \implies -\epsilon < f(x) - L \le 0) \end{split}$$

Limits including infinite

$$\begin{split} \lim_{x \to \infty} f(x) &= L \text{ iff:} \\ &\forall \epsilon > 0 \; \exists N > 0 \; \forall x \; (x > N \implies |f(x) - L| < \epsilon) \\ &\lim_{x \to -\infty} f(x) = L \text{ iff:} \\ &\forall \epsilon > 0 \; \exists N > 0 \; \forall x \; (x < -N \implies |f(x) - L| < \epsilon) \\ &\lim_{x \to a} f(x) = \infty \text{ iff:} \\ &\forall M > 0 \; \exists \delta > 0 \; \forall x \; (0 < |x - a| < \delta \implies f(x) > M) \\ &\lim_{x \to a} f(x) = -\infty \text{ iff:} \\ &\forall M > 0 \; \exists \delta > 0 \; \forall x \; (0 < |x - a| < \delta \implies f(x) < -M) \end{split}$$

Indeterminate forms

- $\cdot \quad \frac{0}{0}$
- <u>∞</u>
- $\infty \cdot 0$
- $\infty \infty$
- ∞^0
- 0⁰
- 1[∞]

Continuity

A function f is continuous at a iff:

$$\lim_{x o a} f(x) = f(a)$$

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (|x-a| < \delta \implies |f(x) - f(a)| < \epsilon)$$

One-side continuous

A function f is continuous from right at a iff:

$$\lim_{x o a^+} f(x) = f(a)$$

A function f is continuous from left at a iff:

$$\lim_{x o a^-} f(x) = f(a)$$

Continuous on an open interval

A function f is continuous in (a, b) iff f is continuous on every $c \in (a, b)$.

Continuous on a closed interval

A function f is continuous in [a, b] iff f is:

- continuous on every $c\in(a,b)$
- right-continuous at ${\it a}$
- left-continuous at $\,b\,$

Uniformly continuous

Suppose a function f is continuous on (a, b). f is uniformly continuous on (a, b) iff:

$$ee \epsilon > 0 \; \exists \delta > 0 \; ext{s.t.} \; |x-y| < \delta \implies |f(x)-f(y)| < \epsilon$$

If a function f is continuous on [a, b], f is uniformly continuous on [a, b].

\land Todo

Is this section correct? I am not 100% sure.

Continuity Theorems

Extreme Value Theorem

If f is continuous on [a, b], f has a maximum and a minimum in [a, b].

(i) Proof Hint

Proof is quite hard.

Intermediate Value Theorem

Let f is continuous on [a,b]. If $\exists u$ such that f(a) > u > f(b) or f(a) < u < f(b): $\exists c \in (a,b)$ such that f(c) = u.

(i) Proof Hint

Proof the case when u = 0. Otherwise define a new function g(x) such that middle part of the above inequality has a 0 in the place of u.

Sandwich (or Squeeze) Theorem

Let:

- For some $\delta > 0$: $orall x (0 < |x-a| < \delta \implies f(x) \le g(x) \le h(x))$
- $\cdot \ \lim_{x o a} f(x) = \lim_{x o a} h(x) = L \in \mathbb{R}$

Then $\lim_{x o a} g(x) = L.$

(i) Note

Works for any kind of x limits.

"No sudden changes"

Positive

Let f be continuous on a and f(a)>0

$$\implies \exists \delta > 0; orall x \left(|x-a| < \delta \implies f(x) > 0
ight)$$

(i) Proof Hint

Take $\epsilon = rac{f(a)}{2}$

Negative

Let f be continuous on a and f(a) < 0

 $\implies \exists \delta > 0; orall x \left(|x-a| < \delta \implies f(x) < 0
ight)$

(i) Proof Hint

Take $\epsilon = -rac{f(a)}{2}$

Differentiability

A function f is differentiable at a iff:

$$\lim_{x o a}rac{f(x)-f(a)}{x-a}=L\in \mathbb{R}=f'(a)$$

f'(a) is called the derivative of f at a.

One-side differentiable

Left differentiable

A function f is left-differentiable at a iff:

$$\lim_{x
ightarrow a^-}rac{f(x)-f(a)}{x-a}=L\in \mathbb{R}=f_-'(a)$$

Right differentiable

A function f is right-differentiable at a iff:

.

$$\lim_{x o a^+}rac{f(x)-f(a)}{x-a}=L\in \mathbb{R}=f_+'(a)$$

Differentiability implies continuity

 $f ext{ is differentiable at } a \implies f ext{ is continuous at } a$

(i) Proof Hint

Use $\delta = min(\delta_1, rac{\epsilon}{1+|f'(a)|}).$

(i) Note

Suppose f is differentiable at a. Define g:

$$g(x)=\left\{egin{array}{c} \displaystyle rac{f(x)-f(a)}{x-a}, & x
eq a \ f'(a), & x=a \end{array}
ight.$$

g is continuous at a.

Extreme Values

Suppose $f:[a,b] \to \mathbb{R}$, and $F = f([a,b]) = \Big\{ f(x) \mid x \in [a,b] \Big\}$. Minimum and maximum values of f are called the extreme values.

Maximum

Maximum of the function f is f(c) where $c \in [a,b]$ iff:

$$orall x \in [a,b], \; f(c) \geq f(x)$$

aka. Global Maximum. Maximum doesn't exist always.

Local Maximum

A Local maximum of the function f is f(c) where $c \in [a,b]$ iff:

$$\exists \delta \hspace{0.2cm} orall x \left(0 < |x-c| < \delta \implies f(c) \geq f(x)
ight)$$

Global maximum is obviously a local maximum.

The above statement can be simplified when c = a or c = b.

When c = a:

$$\exists \delta \hspace{0.2cm} orall x \left(0 < x - c < \delta \implies f(c) \geq f(x)
ight)$$

When c = b:

$$\exists \delta \hspace{0.2cm} orall x \left(-\delta < x - c < 0 \hspace{0.2cm} \Longrightarrow \hspace{0.2cm} f(c) \geq f(x)
ight)$$

Minimum

Minimum of the function f is f(c) where $c \in [a,b]$ iff:

$$orall x \in [a,b], \; f(c) \leq f(x)$$

aka. **Global Minimum**. Minimum doesn't exist always.

Local Minimum

$$\exists \delta \hspace{0.2cm} orall x \left(0 < |x-c| < \delta \implies f(c) \leq f(x)
ight)$$

Global minimum is obviously a local maximum.

The above statement can be simplified when c = a or c = b.

When c = a:

- - - -

$$\exists \delta \hspace{0.2cm} orall x \, (0 < x - c < \delta \implies f(c) \leq f(x))$$

When c = b:

$$\exists \delta \hspace{0.2cm} orall x \left(-\delta < x - c < 0 \hspace{0.2cm} \Longrightarrow \hspace{0.2cm} f(c) \leq f(x)
ight)$$

Special cases

f is continuous

Then by Extreme Value Theorem, we know f has a minimum and maximum in [a, b].

f is differentiable

- If f(a) is a local maximum: $f'_+(a) \leq 0$
- If f(b) is a local maximum: $f'_{-}(b) \geq 0$
- + $c\in (a,b)$ and If f(c) is a local maximum: f'(c)=0
- If $\,f(a)\,$ is a local minimum: $\,f_+'(a)\geq 0\,$
- If f(b) is a local minimum: $f'_{-}(b) \leq 0$
- + $c\in (a,b)$ and If f(c) is a local minimum: f'(c)=0

Critical point

 $c \in [a,b]$ is called a critical point iff:

 $f'(c)=0 \hspace{.1in} arphi \hspace{.1in} f'(c) ext{ is undefined}$

Other Theorems

Rolle's Theorem

Let f be continuous on [a,b] and differentiable on (a,b). And f(a)=f(b). Then:

$$\exists c \in (a,b) ext{ s.t. } f'(c) = 0$$

(i) Proof Hint

By Extreme Value Theorem, maximum and minimum exists for f.

Consider $\mathbf{2}$ cases:

- 1. Both minimum and maximum exist at $\, a \,$ and $\, b \,$.
- 2. One of minimum or maximum occurs in $\left(a,b
 ight)$.

Mean Value Theorem

Let f be continuous on [a, b] and differentiable on (a, b). Then:

$$\exists c \in (a,b) ext{ s.t. } f'(c) = rac{f(b)-f(a)}{b-a}$$

(i) Proof Hint

• Define
$$g(x) = f(x) - \left(rac{f(a) - f(b)}{a - b}
ight) x$$

- g(a) will be equal to $\,g(b)\,$

- Use Rolle's Theorem for $\, g \,$

Cauchy's Mean Value Theorem

Let f and g be continuous on [a,b] and differentiable on (a,b), and $orall x \in (a,b) \; g'(x)
eq 0$ Then:

$$\exists c \in (a,b) ext{ s.t. } rac{f'(c)}{g'(c)} = rac{f(b)-f(a)}{g(b)-g(a)}$$

(i) Proof Hint

- Define $h(x) = f(x) \left(rac{f(a)-f(b)}{g(a)-g(b)}
 ight)g(x)$
- + h(a) will be equal to h(b)
- Use Rolle's Theorem for $\,h\,$

Mean value theorem can be obtained from this when g(x)=x.

Generalized MVT for Riemann Integrals

Let f,g be continuous on [a,b] ($\implies f,g$ are integrable), and g does not change sign on (a,b). Then $\exists \zeta \in (a,b)$ such that:

$$\int_a^b f(x)g(x)\mathrm{d}x = f(\zeta)\int_a^b g(x)\mathrm{d}x$$

(i) Proof Hint

- Use Extreme value theorem for $\,f\,$
- Multiply by $\,g(x)$. Then integrate. Then divide by $\,\int_a^b g(x)$.
- Use intermediate value theorem to find $\,f(\zeta)\,$

L'Hopital's Rule

(i) Note

Be careful with the pronunciation.

- It's not "Hospital's Rule", there are no "s"
- It's not "Hopital's Rule" either, there is a "L'"

L'Hopital's Rule can be used when all of these conditions are met. (here δ is some positive number). Select the appropriate x ranges.

1. Either of these conditions must be satisfied

$$f(a) = g(a) = 0$$

$$f(x) = \lim g(x) = 0$$

$$f(x) = \lim g(x) = 0$$

$$f(x) = \lim g(x) = \infty$$

$$f(x) = \lim g(x) = \infty$$

$$f(x) = 0 \text{ are continuous on } x \in [a, a + \delta]$$

$$f(x) = 0 \text{ on } x \in (a, a + \delta)$$

$$f(x) \neq 0 \text{ on } x \in (a, a + \delta)$$

$$f(x) = L \in \mathbb{R}$$

$$f(x) = L \in \mathbb{R}$$
Then:
$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$$

(i) Note

L'Hopital's rule can be proven using Cauchy's Mean Value Theorem.

It is valid for all types of "x limits".

Higher Order Derivatives

Suppose f is a function defined on (a, b). f is n times differentiable or n-th differentiable **iff**:

$$\lim_{x o a} rac{f^{(n-1)}(x) - f^{(n-1)}(a)}{x-a} = L \in \mathbb{R} = f^{(n)}(a)$$

Here $f^{(n)}$ denotes n-th derivative of f. And $f^{(0)}$ means the function itself.

 $f^{(n)}(a)$ is the n-th derivative of f at a.

(i) Note

 $f ext{ is } n ext{-th differentiable at } a \implies f^{(n-1)} ext{ is continuous at } a$

Taylor's Theorem

Let f is n+1 differentiable on (a,b). Let $c,x\in (a,b)$. Then $\exists \zeta ext{ s.t.}$:

$$f(x) = f(c) + \sum_{k=1}^n rac{f^{(k)}(c)}{k!} (x-c)^k + rac{f^{(n+1)}(\zeta)}{(n+1)!} (x-c)^{n+1}$$

<u>Mean value theorem</u> can be derived from taylor's theorem when n=0.

(i) Proof Hint

$$F(t) = f(t) + \sum_{k=1}^n rac{f^{(k)}(t)}{k!} (x-t)^k$$

$$G(t) = (x-t)^{n+1}$$

- Define $\, F,G \,$ as mentioned above
- Consider the interval $\left[{c,x}
 ight]$
- Use <u>Cauchy's mean value theorem</u> for $oldsymbol{F},oldsymbol{G}$ after making sure the conditions are met.

The above equation can be written like:

$$f(x) = T_n(x,c) + R_n(x,c)$$

Taylor Polynomial

This part of the above equation is called the Taylor polynomial. Denoted by $T_n(x,c).$

$$T_n(x,c) = f(c) + \sum_{k=1}^n rac{f^{(k)}(c)}{k!} (x-c)^k$$

Remainder

Denoted by $R_n(x,c)$.

$$R_n(x,c) = rac{f^{(n+1)}(\zeta)}{(n+1)!} (x-c)^{n+1}$$

Integral form of the remainder

$$R_n(x,c)=rac{1}{n!}\int_c^x f^{(n+1)}(t)(x-t)^n\mathrm{d}t$$

(i) Proof Hint

- Method 1: Use integration by parts and mathematical induction.
- Method 2: Use Generalized MVT for Riemann Integrals where:

$$\circ F = f^{(n+1)}$$

•
$$G = (x - t)^n$$

(i) Note

When n = 1:

$$f(x)=f(c)+f'(c)(x-c)+rac{f''(\zeta)}{2!}(x-c)^2$$

$$f(x)- ext{Tangent line} = rac{f''(\zeta)}{2!}(x-c)^2$$

From this: $f''(c) > 0 \implies$ a local minimum is at c. Converse is **not** true.

Sequences

A sequence on a set A is a function $u: \mathbb{Z}^+ o A.$

Image of the n is written as u_n . A sequence is indicated by one of these ways:

$$\left\{u_n
ight\}_{n=1}^\infty$$
 or $\left\{u_n
ight\}$ or $\left(u_n
ight)_{n=1}^\infty$

Convergence

Converging

A sequence $ig(u_nig)_{n=1}^\infty$ is converging (to $L\in\mathbb{R}$) iff: $\lim_{n o\infty}u_n=L$

$$orall \epsilon > 0 \; \exists N \in \mathbb{Z}^+ \; orall n \; (n > N \implies |u_n - L| < \epsilon)$$

 \fbox Note $orall x \in \mathbb{R} \ \lim_{n o \infty} rac{x^n}{n!} = 0$

Diverging

A sequence is diverging **iff** it is not converging.

$$\lim_{n o \infty} u_n = \left\{egin{array}{c} \infty \ -\infty \ ext{undefined}, & ext{when } u_n ext{ is osciallating} \end{array}
ight.$$

Increasing or Decreasing

A sequence (u_n) is

- Increasing iff $u_n \geq u_m$ for n>m
- Decreasing iff $u_n \leq u_m$ for n>m
- Monotone iff either increasing or decreasing
- Strictly increasing iff $\,u_n > u_m\,$ for $\,n > m\,$
- Strictly decreasing iff $\, u_n < u_m \,$ for $\, n > m \,$

Convergence test

Increasing and bounded above

Let (u_n) be increasing and bounded above. Then (u_n) is converging (to $\sup \{u_n\}$).

(i) Proof Hint

- $\{u_n\}$ has a $\sup u_n(=s)$
- Prove: $\lim_{n o \infty} u_n = s^-$

Decreasing and bounded below

Let (u_n) be decreasing and bounded below. Then (u_n) is converging (to $\inf \{u_n\}$).

(i) Proof Hint

- $\{u_n\}$ has a $\inf u_n (=l)$
- Prove: $\lim_{n o \infty} u_n = l^+$

Newton's method of finding roots

Suppose \boldsymbol{f} is a function. To find its roots:

- Select a point x_0
- Draw a tangent at $\, x_{0} \,$
- Choose x_1 which is where the tangent meets y=0
- Continue this process repeatedly

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$

Series

Let (u_n) be a sequence, and a series (a new sequence) can be defined from it such that:

$$s_n = \sum_{k=1}^n u_k$$

Convergence

If (s_n) is converging:

$$\lim_{n o\infty}s_n=\lim_{n o\infty}\sum_{k=1}^nu_k=\sum_{k=1}^\infty u_k=S\in\mathbb{R}$$

Direct Comparison Test

Let $0 < u_k < v_k$ and $\sum_{k=1}^\infty v_k$ is converging. Then $s_n = \sum_{k=1}^\infty u_k$ is converging.

(i) Proof Hint

- $\sum_{k=1}^n u_k$ and $\sum_{k=1}^n v_k$ are increasing $\sum_{k=1}^\infty v_k$ converges to its supremum

(i) Example

Example usage of this is proving the convergence of $\sum_{k=1}^\infty rac{1}{k!}$, by using $k! \geq 2^{k-1}$ for all $k\geq 0$.

This PDF is saved from https://s1.sahithyan.dev