Summary | Real Analysis

Introduction— |

| Aland ||V ]|or|| —|then|| = |implies|| <« | implied by | | <> | if and only
if | | V| forall || 3| there exists | | ~ | not |

Let’s take a — b.

1. Contrapositive or transposition: ~ b — ~ @ . This is equivalent to the original.
2. Inverse: ~ @ — ~ b. Does not depend on the original.

3. Converse: b — a . Does not depend on the original.

a—>b=~aVb=~b— ~a

Examples
. ~VzP(z) =3z ~ P(x)
. ~ JdzP(z) =Vz ~ P(x)
. JzIyP(z,y) = JyTzP(z,y)
. VzVyP(z,y) = VyVzP(z,y)
. JxVyP(z,y) — VyIzP(z,y)
- (A-C)AN(B—-C)=(AVB)—=>C

Methods of proofs

1. Just proof what should be proven
2. Prove the contrapositive.

3. Proof by contradiction

Proof by contradiction

Let’s say we have to prove: a = b. We will prove a A ~ b to be false. Then by proof
by contradiction, we can prove a — b.



Proof of proof by contradiction
aN~b=F
~(aA~b)=~F
~aVb=T
a—b=T

a — b

Set theory

Zermelo-Fraenkel set theory with axiom of Choice(ZFC):9 axioms all together is being

used here.

Definitions

€A <= x¢ A

. z€AUB < zcAVzcB

. r€ANB < zc ANz €EB

- ACB=Vz(zr€e A = =z € B)

. A—-B=ANB°

- A=B <= ((Vz€ A = z€e B)AN(Vze B = zc€ A))

Required proofs
. (ANB)¢= A°UB°
- (AUB)°=A°NB°
- AN(BUC)=(ANB)U(ANC)
- AU(BNC)=(AuB)N(AUuC)
- ACAUB
- ANBCA



Set of Numbers

Sets of numbers

. Positive integers: Z*T = {1,2,3,4,...}.

- Natural integers: N = {0,1,2,3,4,...}.

- Negative integers: Z~ = {—1,—-2,—-3,—4,...}.
- Integers: Z=7Z"U{0}UZ™".

- Rational numbers: Q = {%|q #0Ap,q€ Z} :

« Irrational numbers: limits of sequences of rational numbers (which are not rational numbers)

« Real numbers: R=Q°UQ.

Complex numbers are not part of the study here.

Continued Fraction Expansion

The process

» Separate the integer part
» Find the inverse of the remaining part. Result will be greated than 1.

» Repeat the process for the remaining part.

Finite expansion

Take %2—;) for example.
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As 462—3) is finite, its continued fraction expansion is also finite. And it can be written as

20 — [6511,2].

Infinite expansion

For irrational numbers, the expansion will be infinite.

For example

7+ 1
15 + 1

1+ 5951

Conintued fraction expansion of 7is [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,...].

Field Axioms
Field Axioms of R
R 75 0 with two binary operations + and - satisfying the following properties

. Closed under addition: Va,b € R;a+b € R

. Commutative: Va,b € R;a+b=b+a

. Associative: Va,b,c € R;(a+b)+c=a+ (b+c)

. Additive identity: 30 € RVa € R;ja+0=0+4+a=a

. Additive inverse: Va € R3(—a);a+ (—a) =(—a) +a=0

. Closed under multiplication: Va,b € R;a-b € R

. Commutative: Va,b € R;a-b=0>b-a

. Associative: Ya,b,c € R;(a-b)-c=a-(b:c)

. Multiplicative identity: 31 € RVa € R;a-1=1-a=a

. Multiplicative inverse: YVa € R —{0}3Ja";a-a” =a" -a=1
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11. Multiplication is distributive over addition: a - (b + c) =a-b+a-c

@ Field

Any set satisfying the above axioms with two binary operations (commonly + and -)
is called a field. Written as (R, +, -) is a Field. But (R, -, +) is not a field.

Required proofs

The below mentioned propositions can and should be proven using the above-
mentioned axioms. a, b, ¢ € R.

. a-0=0
Hint: Start with a(l + 0)
c1#£0
. Additive identity (0) is unique
. Multiplicative identity ( 1) is unique
« Additive inverse ( —a@) is unique for a given a
« Multiplicative inverse ( a~! )
ca+b=0 = b= —a
catc=b+c = a=b
+ —(a+b) = (—a)+(-d)
» —(-a)=a
-« ac=bc = a=0b>
e ab=0 = a=0Vvbdb=0
. —(ab) = (—a)b=a(-b)
- (—a)(—=b) =ab
ca#0 = (a_l)_lza
- a,b#0 = ab™ ! =qa1p!

is unique for a given a

Field or Not?

Is field? Reason (if not)
(R, +,-) True

(R, -, +) False Axiom 11 is invalid



Is field? Reason (if not)
(Z,+,-) False Multiplicative inverse doesn't exist
Q@+, True
(Qc, +, ) False \/5 : \/5 ¢ Qe

Boolean algebra False Additive inverse doesn’t exist
({0,1},+ mod 2,- mod 2) True
({0,1,2},+ mod 3,- mod 3) True

({0,1,2,3},+ mod 4,- mod 4) False Multiplicative inverse doesn’t exist

Completeness Axiom
Let A be a non empty subset of R.

« U is the upper bound of A if: Va € Aj;a < u
A is bounded above if A has an upper bound

« Maximum elementof A: maxA =wu if u € A and u is an upper bound of A
o Supremum of A SupA, is the smallest upper bound of A

 Maximum is a supremum. Supremum is not necessarily a maximum.

. [ isthe lower bound of A if: Va € A;a > 1

. A is bounded below if A has a lower bound

« Minimum elementof A: min A =1 if l € A and [ is a lower bound of A

« Infimum of A inf A, is the largest lower bound of A

e Minimum is a infimum. Infimum is not necessarily a minimum.

Theorems
Let A be a non empty subset of R.

« Say U is an upper bound of A .Then u = SupA iff:
Ve>0da€ A; a+e>u

. Say [ is alower bound of A.Then [ = inf A iff:
Ve>0dae€ A; a—e<l



Required proofs

. sup(a,b) =0b
. inf(a,b) =a

Completeness axioms of real numbers

« Every non empty subset of R which is bounded above has a supremum in R

« Every non empty subset of R which is bounded below has a infimum in R

@ Note

Q doesn’t have the completeness property.

Completeness axioms of integers

« Every non empty subset of Z which is bounded above has a maximum

« Every non empty subset of Z which is bounded below has a minimum

Two important theorems

. JaVe>0,a<e = a<0
- Ve>0da,a<e=5~a<0

Order Axioms

o Trichotomy: ‘v’a, b € R exactly one of these holds: @ > b, a=b,a <b

. Transitivity: Va,b,c € Rja <bAb<c = a<c

- Operation with addition: Va,b € R;a <b — a+c<b+c

- Operation with mutliplication: Va,b,c € R;a <bA0<c¢c = ac < bc

Definitions

ca<b=b>a
ca<b=a<bVa=0>
cafxb=a<bVa>b

| = T ifx >0,
T l—-z ifz<0



Triangular inequalities
la| — 6] < |a+b] < |a| + [b]
|la| — [b]| < |a + b]

Required proofs

. Va,b,ce Ria<bAc<0 = ac> bc
- 1>0
. —la/<a<la

« Triangular inequalities

Theorems

. daVe>0,a<e = a<0
. daVe>0,0<a<e = a=0

() Caution
Ve > 0da, a < e = a < 0is not valid.

Let A be a non-empty subset of R which is bounded above and has an upper bound wu.
u=supA < Ve>0dac A,a>u—c¢
Let A be a non-empty subset of R which is bounded below and has an lower bound m.

m=infA < Ve >0dac€ A,a<m+e



Relations
Definitions

. Cartesian Product of sets A, B
A x B={(a,b)la € A,be B}

« Ordered pair

(a'7 b) - {{a’}7 {a'a b}}

Relation
Let A, B # (. A relation R : A — Bis a non-empty subset of A X B.

- aRb=(a,b) €R

. Domain of R: dom(R) = A

- Codomain of R: codom(R) = B

. Range of R: ran(R) = {y|(z,y) € R}

- ran(R) C B

. Pre-range of R: preran(R) = {z| (z,y) € R}
. preran(R) C A

+ R(a) = {b|(a,b) € R}

Everywhere defined

R is everywhere defined
<= A = dom(R) = preran(R)
<= VYa € A, Jbe B; (a,b) € R.

Onto

R is onto
<= B = codom(R) = ran(R)
< Vbe Bdac€ A(a,b) €R

Aka. surjection.



Inverse

Inverse of R: R = {(b,a) | (a,b) € R}

Types of relation

one-many

<= da € A, db1,b0 € B ((a, bl), (a,, bg) €ERAN b 7é bz)

Not one-many

<= Va € A, Vbl,bz €B ((a, bl), (a, bz) €ER — b = bz)

many-one

<= daj,ay € A, 3b € B ((a1,b), (az,b) € R N a1 # a2)

Not many-one

<> Vai,as € A, Vb e B ((al,b), (az,b) €ER — a1 = 0,2)

many-many

iff R is one-many and many-one.

one-one
iff R is not one-many and not many-one. Aka. injection.
Bijection

When a relation is onto and one-one.

Functions

A function f: A — Bis a relation f : A — B which is everywhere defined and not
one-many.

. dom(f) = A = preran(f)




Inverse

For a function f : A — B to have its inverse relation f =1 : B — A be also a function,

we need:

. f isonto

. [ is not many-one (in other words, f must be one-one)

The above statement is true for all unrestricted function f that has an inverse f_l:
f(F @) =z=f"(f=) =2

Composition
Composition of relations

let R: A — Band S : B — C are 2 relations. Composition can be defined when
ran(R) = preran(S).

Say ran(R) = preran(S) = D. Composition of the 2 relations is written as:
SoR={(a,c)|(a,b) € R, (byc) €S, be D}

Composition of functions

Let f: A — Band g: B — C be 2 functions where f is onto.

gof={(=2)|(z,y) € £, (y,2) €9,y € B} = g(f())

Countability

A set A is countable iff 3f : A — Z*, where f is a one-one function.

Examples

. Countable: Any finite set, Z,Q

« Uncountable: R, Any open/closed intervals in IR.



Transitive property
Say B C A.
A is countable = Bis countable
B is not countable = A is not countable
Limits
lim f(x) = L iff:

T—a
Ve>030>0Vz(0<|z—a|<d = |f(z) —L| <e)
Defining § in terms of a given € is enough to prove a limit.

One sided limits

lim f(z) = L iff:

rz—a™’

Ve>03I0>0Ve(0<z—a<d = |f(z)—L| <e)

lim f(z) = L iff:

T—a -

Ve>030>0Ve (-d<z—a<0 = |f(z)— L| <e)

lim f(z) = L™ iff:

T—a

Ve>03 >0V (0<|z—a|<d = 0< f(x) —L<e)

lim f(z) = L~ iff:

T—a

Ve>030>0Ve(0<|z—a|<d = —e< f(z) —L<0)



Limits including infinite

lim f(x) = L iff:

T—00

Ve>03IN >0Vz (>N = |f(z) — L| <e)

lim f(z) = L iff:

T——00

Ve >03IN >0Vz (z < —N = |f(z) — L| <e)

lim f(x) = oo iff:

T—a

VM >030>0Vz(0< |z—a|<d = f(z) > M)

lim f(z) = —o0 iff:

T—a

VM >03>0Vz2 (0< |z —a| <d = f(z) < —M)

Indeterminate forms

Continuity

A function f is continuous at a iff:

lim £(z) = £(a)

r—a



Ve>030>0Ve (Jz—a| <d = |f(z) — f(a)| <e€)

One-side continuous

A function f is continuous from right at a iff:

lim f(z) = f(a)

z—a™t

A function f is continuous from left at a iff:

lim f(z) = f(a)

T—>a~

Continuous on an open interval

A function f is continuous in (a, b) iff f is continuous on every ¢ € (a, b).

Continuous on a closed interval
A function f is continuous in [a, b] iff f is:

- continuous on every ¢ € (a,b)
« right-continuous at a

« left-continuous at b

Uniformly continuous

Suppose a function f is continuous on (a, ). f is uniformly continuous on (a, b) iff:
Ve>030>0st. |[z—yl<déd = |f(z)— fly)| <e

If a function f is continuous on [a, b], f is uniformly continuous on [a, b].

/\ Todo

Is this section correct? | am not 100% sure.



Continuity Theorems
Extreme Value Theorem

If f is continuous on [a,b], f has a maximum and a minimum in [a, b].

@ Proof Hint

Proof is quite hard.

Intermediate Value Theorem

Let f is continuous on [a, b]. If Ju such that f(a) > u > f(b) or f(a) < u < f(b):
de € (a,b) such that f(c) = u.

(® Proof Hint

Proof the case when u = 0. Otherwise define a new function g(x) such that middle
part of the above inequality has a 0 in the place of u.

Sandwich (or Squeeze) Theorem

Let:

- Forsome § > 0: V(0 < |z —a| <d = f(z) < g(z) < h(x))
. lim f(z) =limh(z) =L e€R

T—a T—a

Then lim g(z) = L.

T—a

(® Note

Works for any kind of x limits.

"No sudden changes”

Positive

Let f be continuous on a and f(a) > 0

— >0V (lz —a| <d = f(z) >0)



@ Proof Hint

f(a)
5

To proof this, take € =

Negative

Let f be continuous ona and f(a) < 0

= 6> 0;Vz(|lz —a| <d = f(z) <0)

@ Proof Hint

To proof this, take € = —%a).

Differentiability

A function f is differentiable at a iff:

T)— fla
L f(@) — f(a)
T—a r—a
f'(a) is called the derivative of f at a.
One-side differentiable
Left differentiable
A function f is left-differentiable at a iff:
r)— fla
L f(@) - fa)
z—a~ r—a
Right differentiable
A function f is right-differentiable at a iff:
T)— fla
L f(@) - fa)

z—a™' r—a

=LeR=f(a)

=LeR=f (a)

=LeR=fl(a)



Differentiability implies continuity

f is differentiable at a = f is continuous at a

@ Proof Hint

Use § = min(d1, W)

® Note
Suppose f is differentiable at a. Define g:

@)= 5@, o,

r—a ’

g9(z) =
f'(a), T=a

g is continuous at a.

Extreme Values

Suppose f : [a,b] = R, and F = f([a,b]) = {f(a:) | z € [a, b] } Minimum and

maximum values of f are called the extreme values.

Maximum

Maximum of the function f is f(c) where ¢ € [a, b] iff:
Vo € b, £(0) > £(z)

aka. Global Maximum. Maximum doesn’t exist always.

Local Maximum

A Local maximum of the function fis f(c) where ¢ € |a, ] iff:



Ve (0<|z—c|<d = f(c) > f(x))

Global maximum is obviously a local maximum.

The above statement can be simplified when ¢ = a or c = b.

When ¢ = a:

B Ve(0<z—c<d = f(c) > f(x))
When ¢ = b:

I Ve (-d<z—c<0 = f(c) > f(z))
Minimum

Minimum of the function fis f(c) where ¢ € |a, b] iff:

Vz € [a,b], f(c) < f(z)
aka. Global Minimum. Minimum doesn’t exist always.

Local Minimum
B Ve (0<|z—c|<d = f(c) < f(x))

Global minimum is obviously a local maximum.
The above statement can be simplified when ¢ = a or ¢ = b.

When ¢ = a:
B Ve(0<z—c<d = f(c) < f(z))

When ¢ = b:



1§ Ve (-d<xz—c<0 = f(c) < f(x))

Special cases
f is continuous

Then by Extreme Value Theorem, we know f has a minimum and maximum in [a, b].

f is differentiable

- If f(a) is alocal maximum: f! (a) <0

. If f(b) is alocal maximum: f'(b) >0

. c € (a,b) andIf f(c) is alocal maximum: f'(c) =0
- If f(a) is alocal minimum: f!(a) >0

- If f(b) is alocal minimum: fl(6) <0

- ¢ € (a,b) and If f(c) is alocal minimum: f'(c) =0

Critical point

c € [a,b] is called a critical point iff:
f'(c)=0 Vv f'(c)is undefined

Other Theorems
Rolle’s Theorem

Let f be continuous on [a, b] and differentiable on (a, b). And f(a) = f(b). Then:

dc € (a,b) s.t. f'(c) =0

@ Proof Hint

By Extreme Value Theorem, maximum and minimum exists for f.

Consider 2 cases:

1. Both minimum and maximum exist at @ and b.




2. One of minimum or maximum occurs in (a, b) :

Mean Value Theorem

Let f be continuous on [a, b] and differentiable on (a, b). Then:

f(b) — f(a)

—a

Jc € (a,b) s.t. f'(c) =

(® Proof Hint

. Define g(z) = f(z) — (f(a) f(b))
- g(a) will be equal to g(b)

e Use Rolle’s Theorem for g

Cauchy’s Mean Value Theorem

Let f and g be continuous on [a, b] and differentiable on (a,b), and
Vz € (a,b) ¢'(z) # 0 Then:

f'ie)  f(b)— f(a)
dc € (a,b) s.t. 70 40) — 9@

@ Proof Hint

. Define h(z) = f(z) — (J; L ) 9(z)
. h(a) will be equal to h(b)

« Use Rolle’s Theorem for h

This is a more generalized version of the mean value theorem. Mean value theorem is

the case when g(z) = .

(® Note



L'Hopital’s rule can be proven using Cauchy’s Mean Value Theorem.

Generalized MVT for Riemann Integrals

Let f, g be continuous on [a,b] (=> f, g are integrable), and g does not change sign
on (a,b). Then 3¢ € (a, b) such that:

[ sz =50 [ oe)es

( Proof Hint

. Use Extreme value theorem for f

o Multiply by g(a:) . Then integrate. Then divide by fab g(:L') .

. Use intermediate value theorem to find f(()

L'Hopital’s Rule
® Note
Be careful with the pronunciation.

« It's not “Hospital’s Rule”, there are no “s”

» It's not “Hopital’s Rule” either, there is a “L’“.

L'Hopital’s Rule can be used when all of these conditions are met. (here § is some
positive number).

1. f and g are 2 functions defined at @

2. f(a) = g(a) = 0

Also valid when either of these conditions is satisfied
o lim f(z) =limg(z) =0
o lim f(z) = lim g(z) = o0
3. f, g are continuous on & € [a,a + J]
4. f,g are differentiable on € (a,a + 6)



5. 9'(z) #0 on z € (a,a + 9)
6. im L& — [ cR

rz—a™t )

g (z
flz) _
g(z) L

Then: lim
rz—at

(@ Note

L’'Hopital’s Rule is valid for all types of “x limits”.

Higher order derivatives

Suppose f is a function defined on (a, b). f is n times differentiable or n-th
differentiable iff:

(n=1)(g) — f(r-1)
i £070(@) — £ (a)

T—a T —a

= LeR=7"(a)

Here f(") denotes n-th derivative of f. And f(o) means the function itself.

™ (a) is the n-th derivative of f at a.

® Note

f is differentiable at a = 1 is continuous at a

Taylor’s Theorem

Let f is n + 1 differentiable on (a, b). Let ¢,z € (a,b). Then 3¢ s.t. :

(w . c)n+1

_ 2, F®(c) F(Q)
f(z) = f(C)'i'kz:; i (z—o)*+ e



Mean value theorem can be derived from taylor’'s theorem when n = 0.

() Proof Hint
. Define F(t) = f(t) + 3 _k = 1"L20 (z _ 1)k
. Define G(t) = (z — )™}
 Consider the interval [c, .’1:]

« Use Cauchy’s mean value theorem for F, G after making sure the conditions are met.

The above equation can be written like:

f(z) = Tn(z,c) + Ry(z, )

Taylor Polynomial

This part of the above equation is called the Taylor polynomial. Denoted by T, (z, c).

n )
T(@,6) = () + 3 1Dz - o
k=1 :

Remainder

Denoted by R,(z, ¢).

£ ()

Ba(@,c) = (n+1)!

(w . c)n+1

Integral form of the remainder

R, (z,c) = % /w f(n+1)(t)(93 — t)"dt

(@ Proof Hint



o Method 1: Use integration by parts and mathematical induction.

e Method 2: Use Generalized MVT for Riemann Integrals where:

o F= f(n+1)
(@ Note
Whenn = 1:

7<)
!

(@ — o)’

f() = f(e) + f(c)(z —c) +

f(z) — Tangent line = %(m —c)?

From this: f”’(¢) > 0 = a local minimum is at c. Converse is not true.
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