
Summary | Real Analysis

Introduction— |

| | and | | | or | | | then | | | implies | | | implied by | | | if and only

if | | | for all | | | there exists | | | not |

Let’s take . 

1. Contrapositive or transposition: . This is equivalent to the original.

2. Inverse: . Does not depend on the original.

3. Converse: . Does not depend on the original.

Examples

Methods of proofs

1. Just proof what should be proven

2. Prove the contrapositive.

3. Proof by contradiction

Proof by contradiction

Let’s say we have to prove: . We will prove  to be false. Then by proof

by contradiction, we can prove .



Proof of proof by contradiction

Set theory

Zermelo-Fraenkel set theory with axiom of Choice(ZFC):9 axioms all together is being

used here.

Definitions

Required proofs



Set of Numbers

Sets of numbers

Positive integers: .

Natural integers: .

Negative integers: .

Integers: .

Rational numbers: . 

Irrational numbers: limits of sequences of rational numbers (which are not rational numbers)

Real numbers: . 

Complex numbers are not part of the study here.

Continued Fraction Expansion

The process

Separate the integer part

Find the inverse of the remaining part. Result will be greated than 1.

Repeat the process for the remaining part.

Finite expansion

Take for example.



As  is finite, its continued fraction expansion is also finite. And it can be written as

.

Infinite expansion

For irrational numbers, the expansion will be infinite.

For example :

Conintued fraction expansion of  is .

Field Axioms

Field Axioms of

 with two binary operations  and  satisfying the following properties

1. Closed under addition: 

2. Commutative: 

3. Associative: 

4. Additive identity: 

5. Additive inverse: 

6. Closed under multiplication: 

7. Commutative: 

8. Associative: 

9. Multiplicative identity: 

10. Multiplicative inverse: 



11. Multiplication is distributive over addition: 

Field

Any set satisfying the above axioms with two binary operations (commonly  and )

is called a field. Written as . But .

Required proofs

The below mentioned propositions can and should be proven using the above-

mentioned axioms. . 

Hint: Start with 

Additive identity ( ) is unique

Multiplicative identity ( ) is unique

Additive inverse ( ) is unique for a given

Multiplicative inverse ( ) is unique for a given

Field or Not?

Is field? Reason (if not)

True

False Axiom 11 is invalid



Is field? Reason (if not)

False Multiplicative inverse doesn’t exist

True

False

Boolean algebra False Additive inverse doesn’t exist

True

True

False Multiplicative inverse doesn’t exist

Completeness Axiom

Let be a non empty subset of .

 is the upper bound of  if: 

 is bounded above if  has an upper bound

Maximum element of :  if  and  is an upper bound of 

Supremum of  , is the smallest upper bound of 

Maximum is a supremum. Supremum is not necessarily a maximum.

 is the lower bound of  if: 

 is bounded below if  has a lower bound

Minimum element of :  if  and  is a lower bound of 

Infimum of , is the largest lower bound of

Minimum is a infimum. Infimum is not necessarily a minimum.

Theorems

Let  be a non empty subset of .

Say is an upper bound of . Then iff:

Say  is a lower bound of . Then  iff:



Required proofs

Completeness axioms of real numbers

Every non empty subset of  which is bounded above has a supremum in 

Every non empty subset of  which is bounded below has a infimum in 

Note

 doesn’t have the completeness property. 

Completeness axioms of integers

Every non empty subset of which is bounded above has a maximum

Every non empty subset of which is bounded below has a minimum

Two important theorems

Order Axioms

Trichotomy:  exactly one of these holds: , , 

Transitivity: 

Operation with addition: 

Operation with mutliplication: 

Definitions



Triangular inequalities

Required proofs

Triangular inequalities

Theorems

Caution

 is not valid.

Let be a non-empty subset of which is bounded above and has an upper bound .

Let  be a non-empty subset of  which is bounded below and has an lower bound .



Relations

Definitions

Cartesian Product of sets 

Ordered pair

 

Relation

Let . A relation  is a non-empty subset of .

Domain of :

Codomain of :

Range of :

Pre-range of : 

 

Everywhere defined

 is everywhere defined

.

Onto

 is onto

Aka. surjection.



Inverse

Inverse of :

Types of relation

one-many

Not one-many

 

many-one

 

Not many-one

many-many

iff  is one-many and many-one. 

one-one

iff is not one-many and not many-one. Aka. injection.

Bijection

When a relation is onto and one-one.

Functions

A function is a relation which is everywhere defined and not

one-many.



Inverse

For a function to have its inverse relation be also a function,

we need:

 is onto

 is not many-one (in other words,  must be one-one)

The above statement is true for all unrestricted function  that has an inverse :

Composition

Composition of relations

Let  and  are 2 relations. Composition can be defined when

.

Say . Composition of the 2 relations is written as: 

Composition of functions

Let  and  be 2 functions where  is onto.

Countability

A set  is countable iff , where  is a one-one function.

Examples

Countable: Any finite set, 

Uncountable: , Any open/closed intervals in .



Transitive property

Say .

Limits

 iff: 

Defining  in terms of a given  is enough to prove a limit.

One sided limits

 iff: 

 iff: 

iff:

iff:



Limits including infinite

iff:

iff:

 iff: 

 iff: 

Indeterminate forms

Continuity

A function  is continuous at  iff:



One-side continuous

A function  is continuous from right at  iff:

A function  is continuous from left at  iff:

Continuous on an open interval

A function  is continuous in  iff  is continuous on every .

Continuous on a closed interval

A function  is continuous in  iff  is:

continuous on every 

right-continuous at 

left-continuous at 

Uniformly continuous

Suppose a function is continuous on . is uniformly continuous on iff:

If a function  is continuous on ,  is uniformly continuous on .

Todo

Is this section correct? I am not 100% sure.



Continuity Theorems

Extreme Value Theorem

If  is continuous on ,  has a maximum and a minimum in .

Proof Hint

Proof is quite hard.

Intermediate Value Theorem

Let  is continuous on . If  such that  or :

 such that .

Proof Hint

Proof the case when . Otherwise define a new function such that middle

part of the above inequality has a  in the place of .

Sandwich (or Squeeze) Theorem

Let:

For some : 

Then . 

Note

Works for any kind of x limits.

”No sudden changes”

Positive

Let  be continuous on  and 

 



Proof Hint

To proof this, take . 

Negative

Let be continuous on and

 

Proof Hint

To proof this, take . 

Differentiability

A function  is differentiable at  iff:

 is called the derivative of  at .

One-side differentiable

Left differentiable

A function  is left-differentiable at  iff:

Right differentiable

A function  is right-differentiable at  iff:



Differentiability implies continuity

Proof Hint

Use . 

Note

Suppose is differentiable at a. Define :

 is continuous at .

Extreme Values

Suppose , and . Minimum and

maximum values of are called the extreme values.

Maximum

Maximum of the function  is  where  iff:

aka. Global Maximum. Maximum doesn’t exist always.

Local Maximum

A Local maximum of the function  is  where  iff:



Global maximum is obviously a local maximum.

The above statement can be simplified when  or .

When : 

When : 

Minimum

Minimum of the function  is  where  iff:

aka. Global Minimum. Minimum doesn’t exist always.

Local Minimum

Global minimum is obviously a local maximum.

The above statement can be simplified when  or .

When :

When : 



Special cases

f is continuous

Then by Extreme Value Theorem, we know  has a minimum and maximum in .

f is differentiable

If  is a local maximum: 

If  is a local maximum: 

 and If  is a local maximum: 

If  is a local minimum: 

If  is a local minimum: 

 and If  is a local minimum: 

Critical point

 is called a critical point iff: 

Other Theorems

Rolle’s Theorem

Let  be continuous on  and differentiable on . And . Then:

Proof Hint

By Extreme Value Theorem, maximum and minimum exists for . 

Consider 2 cases:

1. Both minimum and maximum exist at  and .



2. One of minimum or maximum occurs in .

Mean Value Theorem

Let be continuous on and differentiable on . Then:

Proof Hint

Define 

 will be equal to 

Use Rolle’s Theorem for

Cauchy’s Mean Value Theorem

Let  and  be continuous on  and differentiable on , and

 Then:

Proof Hint

Define 

 will be equal to 

Use Rolle’s Theorem for 

This is a more generalized version of the mean value theorem. Mean value theorem is

the case when . 

Note



L’Hopital’s rule can be proven using Cauchy’s Mean Value Theorem.

Generalized MVT for Riemann Integrals

Let  be continuous on  (  are integrable), and  does not change sign

on . Then  such that:

Proof Hint

Use Extreme value theorem for 

Multiply by . Then integrate. Then divide by .

Use intermediate value theorem to find 

L’Hopital’s Rule

Note

Be careful with the pronunciation.

It’s not “Hospital’s Rule”, there are no “s”

It’s not “Hopital’s Rule” either, there is a “L’“.

L’Hopital’s Rule can be used when all of these conditions are met. (here is some

positive number).

1.  and  are 2 functions defined at 

2. 

Also valid when either of these conditions is satisfied

3.  are continuous on 

4.  are differentiable on 



5.  on 

6. 

Then:  

Note

L’Hopital’s Rule is valid for all types of “x limits”.

Higher order derivatives

Suppose  is a function defined on .  is  times differentiable or -th

differentiable iff:

Here  denotes -th derivative of . And  means the function itself.

 is the -th derivative of  at .

Note

Taylor’s Theorem

Let is differentiable on . Let . Then :



Mean value theorem can be derived from taylor’s theorem when . 

Proof Hint

Define 

Define

Consider the interval

Use Cauchy’s mean value theorem for  after making sure the conditions are met.

The above equation can be written like:

Taylor Polynomial

This part of the above equation is called the Taylor polynomial. Denoted by . 

Remainder

Denoted by . 

Integral form of the remainder

Proof Hint



Method 1: Use integration by parts and mathematical induction.

Method 2: Use Generalized MVT for Riemann Integrals where:

Note

When :

From this:  a local minimum is at . Converse is not true.
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