Summary | Riemann Integration

Introduction

Interval

Let $I = [a, b]$. Length of the interval $|I| = b - a$.

Disjoint interval

When 2 intervals don't share any common numbers.

Almost disjoint interval

When 2 intervals are disjoint or intersect only at a common endpoint.

Riemann Integral

Let $f - [a, b] \rightarrow \mathbb{R}$ is a bounded (not necessarily continuous) function on a closed, bounded (compact) interval.

Riemann integral of f is: $\int_a^b f$

Definite integral

When a, b are constants.

Indefinite integral

When a is a constant but b is replaced with x .

Partition

Let I be a non-empty, compact interval (closed and bounded). A partition of I is a finite collection $\{I_1, I_2, \ldots, I_n\}$ of almost disjoint, non-empty, compact sub-intervals whose union is I .

A partition is determined by the endpoints of all sub-intervals:

 $a = x_0 < x_1 < \cdots < x_n = b.$

A partition can be denoted by:

- its intervals $P = \{I_1, I_2, \ldots, I_n\}$
- the endpoints of its intervals $P = \{x_0, x_1, \ldots, x_n\}$

Riemann Sum

Let

 $\cdot \hspace{0.2cm} f \, : \, [a,b] \rightarrow \mathbb{R}$ is a bounded function on the compact interval $I=[a,b]$ with $M = \sup_I f$ and $m = \inf_I f$.

$$
\boldsymbol{\cdot}\ \ P=\{I_1,I_2,\ldots,I_n\}
$$

$$
\quad \cdot \ \ M_k=\sup\nolimits_{I_k}f=\sup\left\{f(x):x\in[x_{k-1},x_k]\right\}
$$

 $\boldsymbol{v} \cdot \ m_k = \inf_{I_k} f = \inf \left\{ f(x) : x \in [x_{k-1},x_k] \right\}.$

Upper riemann sum

$$
U(f;P)=\sum_{k=1}^n M_k |I_k|
$$

Lower riemann sum

$$
L(f;P)=\sum_{k=1}^n m_k |I_k|
$$

 $m_k < M_k \implies L(f;P) \leq U(f;P)$

When P_1, P_2 are any 2 partitions of $I: L(f; P_1) \leq U(f; P_2)$

Refinements

 Q is called a refinement of $P \iff$ if P and Q are partitions of $[a, b]$ and $P \subseteq Q$. When Q is a refinement of P :

$$
L(f;P)\leq L(f;Q)\leq U(f;Q)\leq U(f;P)
$$

Note

If P_1 and P_2 are partitions of $|a,b|$, then $Q=P_1\cup P_2$ is a refinement of both and \emph{P}_{2} . In that case:

$$
L(f;P_1)\leq L(f;Q)\leq U(f;Q)\leq U(f;P_2)
$$

Upper & Lower integral

Let $\mathbb P$ be the collection of all possible partitions of the interval $[a,b]$.

Upper Integral

$$
U(f)=\inf\left\{U(f;P);P\in\mathbb{P}\right\}=\overline{\int_a^bf}
$$

Lower Integral

$$
L(f)=\sup{\{L(f;P); P\in \mathbb{P}\}}=\int_a^b f
$$

For a bounded function f , always $L(f) \leq U(f)$

Riemann Integrable

A bounded function $f: [a,b] \to \mathbb{R}$ is Riemann integrable on $[a,b]$ iff $U(f) = L(f)$. In that case, the Riemann integral of f on $[a,b]$ is denoted by $\int_a^b f(x) \,\mathrm{d} x.$

Reimann Integrable or not

Note

If the set of points of discontinuity of a bounded function $f:[a,b]\rightarrow \mathbb{R}$ is finite, then f is Riemann integrable on $[a, b]$.

Note

If the set of points of discontinuity of a bounded function $f:[a,b]\rightarrow \mathbb{R}$ is finite number of limit points, then f is integrable on $[a, b]$.

A function may have infinitely many discontinuous points, but if the set of all discontinuous points have finite number of limit points, then f is integrable on $[a, b]$.

Cauchy Criterion

Theorem

A bounded function $f: [a, b] \to R$ is Riemann integrable **iff** for every $\epsilon > 0$ there exists a partition P_{ϵ} of $[a, b]$, which may depend on ϵ , such that:

 $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$

$U(f, P\epsilon) - L(f, P\epsilon) \leq \epsilon$

Proof Hint

- To prove \implies : consider $L(f) \frac{e}{2}$ and
- To prove \iff : consider

Note

 $f:[a,b]\rightarrow \mathbb{R}$ is integrable on $[a,b]$ when:

- The set of points of discontinuity of a bounded function \boldsymbol{f} is finite.
- The set of points of discontinuity of a bounded function $\,f\,$ is finite number of limit points. (may have infinite number of discontinuities) :::

Theorems on Integrability

Theorem 1

Suppose $f : [a, b] \to \mathbb{R}$ is bounded, and integrable on $[c, b]$ for all $c \in (a, b)$. Then f is integrable on $[a, b]$. Also valid for the other end.

Proof Hint

- Isolate a partition on the required end.
- Choose x_1 or x_{n-1} such that $\Delta x < \frac{e}{4M}$ where M is an upper or lower bound.

Theorem 2

Suppose $f : [a, b] \to \mathbb{R}$ is bounded, and continuous on $[c, b]$ for all $c \in (a, b)$. Then f is integrable on $[a, b]$. Also valid for the other end.

TODO: Proof Hint

Properties Of Integrals

Notation

If $a < b$ and f is integrable on $[a, b]$, then:

$$
\int_a^b f = - \int_b^a f
$$

Properties

Suppose f and g are integrable on $[a, b]$.

Addition

 $f + g$ will be integrable on $[a, b]$.

$$
\int_a^b (f \pm g) = \int_a^b f \pm \int_a^b g
$$

Constant multiplication

Suppose $k \in \mathbb{R}$. kf will be integrable $[a, b]$.

$$
\int_a^b kf = k \int_a^b f
$$

Bounds

If $m \le f(x) \le M$ on $[a,b]$:

$$
m\leq \int_a^b f\leq M
$$

 $\mathcal{L}^{\text{max}}_{\text{max}}$, where $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\omega_{\rm c}$

If $f(x) \leq g(x)$ on $[a,b]$:

$$
\int_a^b f \leq \int_a^b g
$$

Modulus

 $|f|$ will be integrable on $[a, b]$.

$$
\left| \int_a^b f \right| = \int_a^b |f|
$$

This PDF is saved from https://s1.sahithyan.dev