Summary | Vectors

Introduction

Revise Vectors unit from G.C.E (A/L) Combined Mathematics.

Section formula

Suppose O is the reference point, and P,Q are 2 points.

If ${\rm R}$ divides the line segment ${\rm PQ}$ in the ratio $m:n$ (both are positive and $m\geq n$), the division can either be internal or external.

Internally

$$
\overrightarrow{\mathrm{OR}} = \frac{m\overrightarrow{\mathrm{OQ}}+n\overrightarrow{\mathrm{OP}}}{m+n}
$$

Externally

$$
\overrightarrow{\mathrm{OR}} = \frac{m\overrightarrow{\mathrm{OQ}} - n\overrightarrow{\mathrm{OP}}}{m-n}
$$

Direction Cosines

Suppose $\vec{p}=a\underline{i}+b\underline{j}+c\underline{k}$. Direction cosines of p are $\cos\alpha,\cos\beta,\cos\gamma$ where α,β,γ are the angles p makes with x, y, z axes.

Unit vector in the direction of $\vec{p} = \underline{i} \cos \alpha + \underline{j} \cos \beta + \underline{k} \cos \gamma$. Because of this:

$$
\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1
$$

Direction Ratio

Ratio of the direction cosines is called as direction ratio.

$$
\cos\alpha\,:\,\cos\beta\,:\,\cos\gamma
$$

Cross Product

$$
a\times b = |a||b|sin(\theta)n = \det \begin{pmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{pmatrix}
$$

 n is the **unit normal vector** to a and b . Direction is based on the right hand rule.

 $a \times b = 0 \implies |a| = 0 \vee |b| = 0 \vee a \parallel b$

Cross products between i , j , k are circular.

Properties

• $a \times a = 0$

$$
\bullet \ \ (a\times b) = -(b\times a)
$$

 $a \times (b+c) = (a \times b) + (a \times c)$

Note

Area of a parallelogram $ABCD = |\vec{AB} \times \vec{AD}|$

Scalar Triple Product

$$
[a,b,c]=a\cdot (b\times c)=\det \begin{pmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{pmatrix}
$$

$$
[a,b,c]=a\cdot (b\times c)=(a\times b)\cdot c
$$

$$
[a,b,c]=[b,c,a]=[c,a,b]=-[a,c,b]
$$

 $[a, b, c] = 0$ iff a, b, c are coplanar. Swapping any 2 vectors will negate the product.

Note

Volume of a tetrahedron with a, b, c as adjacent edges = $\frac{1}{6}[a, b, c]$

Vector Triple Product

$$
a\times (b\times c)=(a\cdot c)b-(a\cdot b)c
$$

Resulting vector lies in the plane that contains b and c

Straight Lines

Passes through a point & parallel to a vector

Equation for a line that:

- passes through $\boxed{r_0} = \langle x_0, y_0, z_0 \rangle$
- is parallel to $\underline{v} = a\underline{i} + b\underline{j} + c\underline{k}$

Parametric equation

$$
\underline{r}=r_0+t\underline{v};\;t\in\mathbb{R}
$$

Symmetric equation

$$
\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}
$$

Passes through 2 points

Equation of a line passes through $A=(x_1,y_1,z_1)$, $B=(x_2,y_2,z_2)$. $\underline{r_A}$ and $\underline{r_B}$ are the position vectors of A and B .

Parametric equation

$$
\underline{r}=(1-t)r_A+tr_B;\; t\in\mathbb{R}
$$

Symmetric equation

$$
\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}
$$

Note

To show that two straight lines intersect in 3D space, it is **not** enough to show that the cross product of their parallel vectors is non-zero.

Also: Existence of a point which satisfies both lines must be proven.

Normal to 2 lines

Let α , β be two lines.

$$
\alpha: \frac{x-x_1}{a_1}=\frac{y-y_1}{b_1}=\frac{z-z_1}{c_1};\ \ \beta: \frac{x-x_2}{a_2}=\frac{y-y_2}{b_2}=\frac{z-z_2}{c_2}
$$

Here $v_1 = \langle a_1, b_1, c_1 \rangle$, $v_2 = \langle a_2, b_2, c_2 \rangle$ are 2 vectors parallel to α, β respectively.

Normal to both lines: $v_1 \times v_2$. Unit normal to both lines can be found by:

$$
\frac{v_1 \times v_2}{|v_1 \times v_2|}
$$

Angle between 2 straight lines

Using the α , β lines mentioned above:

$$
\cos\theta = \frac{v_1 \cdot v_1}{|v_1| \cdot |v_2|} = \frac{(a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}) \cdot (a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k})}{|a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}| \cdot |a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k}|}
$$

Here v_1, v_2 are 2 vectors parallel to α, β respectively.

Shortest distance to a point

Suppose x_1 and x_2 lie on a line. Shortest distance to the point P is:

$$
d^2=\frac{\left|\left(\underline{x_2}-\overrightarrow{OP}\right)\times\left(\underline{x_1}-\overrightarrow{OP}\right)\right|^2}{\left|\underline{x_2}-\underline{x_1}\right|^2}
$$

Planes

Equation of planes can expressed in either vector or cartesian form. Vector equation is the one containing only vectors. Cartesian equation is in the form: $Ax + By + Cz = D$.

Contains a point and parallel to 2 vectors

Suppose a plane:

- is parallel to both a and b where $a \times b \neq 0$
- contains $r_0 = x_0 \underline{i} + y_0 \underline{j} + z_0 \underline{k}$

Equation for the plane is:

$$
\underline{r}=r_0+s\underline{a}+t\underline{b}\;;\;s,t\in\mathbb{R}
$$

Contains a point and normal is given

Suppose a plane:

- contains $r_0 = x_0 \underline{i} + y_0 \underline{j} + z_0 \underline{k}$
- \bullet has a normal n

Equation for the plane is:

$$
(\underline{r}-r_0)\cdot \underline{n}=0
$$

Contains 3 points

Suppose a plane contains $r_0, r_1, r_2 \, (r_0, r_1, r_2$ are the position vectors of respectively).

$$
(\underline{r}-\underline{r_1})\cdot\left[(\underline{r_1}-\underline{r_0})\times(\underline{r_1}-\underline{r_2})\right]=0
$$

Normal to a plane

Suppose $ax + by + cz = d$ is a plane. $\underline{n} = a\underline{i} + b\underline{j} + c\underline{k}$ is a normal to the plane.

Angle between 2 planes

Consider the two planes:

- $A: a_1x + a_2y + a_3z = d$
- $B : b_1x + b_2y + b_3z = d'$

The angle between the planes ϕ is given by:

$$
\cos(\phi) = \frac{n_A \cdot n_B}{|n_A| \cdot |n_B|} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}}
$$

Here n_A, n_B are normal to the planes A, B .

Shortest distance to a point

Considering a plane $ax + by + cz = d$.

$$
\text{distance} = \frac{|(r_1 - r_0) \cdot \underline{n}|}{|n|}
$$

- \bullet \overline{n} is a normal to the plane
- \bullet r_0 is the position vector of any known point on the plane
- r_1 is the position vector to the arbitrary point

Skew Lines

Two non-parallel lines in a 3-space that do not intersect.

Normal to 2 skew lines

Let l_1, l_2 be 2 skew lines.

$$
l_1: \frac{x-x_0}{a_0} = \frac{y-y_0}{b_0} = \frac{z-z_0}{c_0} \ ; \ \ l_2: \frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}
$$

The unit normal to both lines \underline{n} is:

$$
\underline{n}=\frac{\langle a_0,b_0,c_0\rangle\times\langle a_1,b_1,c_1\rangle}{|\langle a_0,b_0,c_0\rangle\times\langle a_1,b_1,c_1\rangle|}
$$

Distance between 2 skew lines

$$
\text{distance} = |\overrightarrow{AB} \cdot \underline{n}|
$$

Here

- \underline{n} is the normal to both l_1, l_2
- A and B are points lying on each line

This PDF is saved from https://s1.sahithyan.dev