
Sahithyan's S1 -- Programming Fundamentals

B-book

Introduction

Computers are used to process data and produce useful information.

Terminology

Bit

A binary digit. Either a or a .

Byte

A collection of 8 bytes. Aka. octet.

Octet vs Byte

In the early days of computing, a byte wasn’t always 8 bits - different computers used different byte

lengths ranging from 1 to 48 bits. An octet specifically refers to 8 bits and was used to avoid

ambiguity, especially in networking protocols. Over time, the 8-bit byte became standard and now

byte and octet mean the exact same thing, though octet remains common in networking contexts.

Information

Computers can process various types of data. When a communication link (such as Internet) is

provided, the data can be transferred to other users despite of distance. The computer and

communication technologies that made this possible are together referred to as information

technology or IT (or, sometimes as information and communication technology or ICT). Computers

are therefore at the heart of IT.

An information system is a system with well-defined procedures and techniques to collect, store,

process, and disseminate information.

From Sahithyan's S1

https://s1.sahithyan.dev

Number Systems

A writing system for expressing numbers. Each number system defines a set of symbols that each

represent a specific value.

Base (or radix)

Number of symbols defined by a number system.

Commonly used number systems

Base 10 -

Base 2 -

Base 8 -

Base 16 -

Conversion between number systems

10 —> n

Integer part

Repeatedly divide the number (and the quotients) by until reaching 1

Write the remainders in reverse order

Fractional part

Repeatedly multiply by until fractional part reaches 0

Write the integer parts in normal order

n —> 10

Multiply each digit by its positional value, and sum those values. Positional value is where is the

position.

2 —> 8

Split the given binary number into length 3 parts (prepend 0s if required)

Convert each part to octal

Join those together

From Sahithyan's S1

https://s1.sahithyan.dev

2 —> 16

Split the given binary number into length 4 parts (prepend 0s if required)

Convert each part to hexagonal

Join those together

16 —> 2

Convert each digit to 4-bit binary and join them together.

8 —> 2

Convert each digit to 3-bit binary and join them together.

8 <—> 16

Convert the number to base 2 or 10 and then conver to the target base.

Caution

These are required in s1:

Addition, subtraction in base 2, 8, 16

Multiplication, division in base 2

But I don’t know how to include them in a easy-to-understand way. �

Confusion about unit prefixes

In computing, the prefix kilo —just like other prefixes— has been used to refer either or

depending on the context.

 - Marketing of disk capacities (by disk manufacturers)

 - Memory capacities, and file sizes, disk capacities by operating systems

To avoid this confusion, 2 unit prefixes are used while measuring amounts of data.

SI prefixes Defined by ISO. Based on powers of . Examples: kilo, mega, giga.

Binary prefixes Defined by IEC. Based on powers of . Examples: kibi, mebi, gibi.

From Sahithyan's S1

https://s1.sahithyan.dev

Data Representation

There are 2 types of data in computers.

Computer memory can be thought of an array of memory cells that each store 1 bit. Total number of

bits a memory can hold is limited.

Most Significant Bit (MSB)

In a -bit memory, memory cell at the -th position is the most significant bit. Or left-most bit.

Least Significant Bit (LSB)

In a -bit memory, memory cell at the -th position is the most significant bit. Or right-most bit.

Number of states

A -bit memory can denote different states. Each state can be mapped to some information.

Word

In computing, a word is a fixed-size datum handled as a unit by the instruction set or hardware of a

processor.

Word size

Size of a processor’s word.

Representation methods

Note

In s1, representation of integers, floating point numbers, strings are studied.

Numerical

Represents quantifiable and countable things. For example: integers, floating-point numbers.

Integers are considered in 2 sections: signed and unsigned integers.

Intgers

Floating-point numbers

From Sahithyan's S1

https://s1.sahithyan.dev

Non-numerical

Represents all other data other than numerical. For example: text, images, videos, phone numbers.

Strings

Integers

Unsigned integers

Unsigned integers can be represented in memory in binary. Only positive integers are supported, by

convention.

In -bit register, number of integers can be represented, usually in the range

Signed integers

Both positive and negative integers are supported. There are 2 ways to represent them.

One’s complement

The ones’ complement of a binary number is the value obtained by flipping all the bits in the binary

representation of the number.

If one’s complement of is , then one’s complement of is .

Binary representation of will include all s.

One’s complement system

In which negative numbers are represented by the inverse of the binary representations of their

corresponding positive numbers. First bit denotes the sign of the number.

Positive numbers are the denoted as basic binary numbers with as the MSB.

Negative values are denoted by the one’s complement of their absolute value.

For example, to find the one’s complement system representation of , one’s complement of

must be found. . One’s complement of is .

Two’s complement

In which negative numbers are represented using the MSB (sign bit).

If MSB is:

From Sahithyan's S1

https://s1.sahithyan.dev

: negative

: positive

Positive numbers are represented as basic binary numbers with an additional as the sign bit.

For example:

Following equation can be used to convert a number in two’s complement form to decimal.

Represent n in two’s complement

If is positive or zero: is converted into binary and mentioned as is.

If is negative:

���Starting with the absolute binary representation of

���If MSB is not a 0, add a leading bit

���Find the one’s complement: flip all bits (which effectively subtracts the value from -1)

���Add 1, ignoring any overflows

Floating-point Numbers

IEEE 754 standard.

2 types:

single precision

double precision

Single precision

Uses bits.

sign bit - bit

exponent - bit

mantissa - bit

From Sahithyan's S1

https://s1.sahithyan.dev

Sign bit

 if positive or zero. if negative.

Exponent

Exponent field range - . In this range is defined for normal numbers. and are

reserved for subnormal, infinite, signed zeros and NaN.

To support negative exponents, (half of) is subtracted from this range. . This

range is the representable range.

Mantissa

In scientific notation, the part that doesn’t contain the base and the power.

In binary scientific notation, there will always be exactly one bit before the dot. So the inital is not

included in the mantissa.

Example

Take .

In binary:

In binary scientific notation:

Add to exponent:

Convert exponent to binary

Write the final result:

Take .

In binary:

In binary scientific notation:

Add to exponent:

Convert exponent to binary

Write the final result:

Double precision

Uses bits.

From Sahithyan's S1

https://s1.sahithyan.dev

sign bit - bit

exponent - bit

mantissa - bit

Sign bit

 if positive or zero. if negative.

Exponent

Exponent field range - . In this range is defined for normal numbers. and

are reserved for subnormal, infinite, signed zeros and NaN.

To support negative exponents, (half of) is subtracted from this range. .

This range is the representable range.

Mantissa

In scientific notation, the part that doesn’t contain the base and the power.

In binary scientific notation, there will always be exactly one bit before the dot. So we don’t include

that one.

From Sahithyan's S1

https://s1.sahithyan.dev

Example

Take .

In binary:

In binary scientific notation:

Add to exponent:

Convert exponent to binary:

Write the final result:

Take .

In binary:

In binary scientific notation:

Add to exponent:

Convert exponent to binary:

Write the final result:

Strings

A way of representing non-numerical data.

Commonly used encodings

ASCII

Abbreviation for American Standard Code for Information Interchange. Uses 7 bits for letter

representation and a parity bit (MSB). Can represent latin alphabet, digits, punctuations, and control

characters.

Major limitation in ASCII is it can’t support multiple languages.

Unicode

Uses 32 bits. Supports multiple languages and emojis. Characters are presented by code points. A

code point is a integer (in base 16).

From Sahithyan's S1

https://s1.sahithyan.dev

Data Types

Data types can be grouped into 3 categories.

Primitive

Data types that are directly supported by a programming languages.

Examples are:

Boolean

Characters

Integers

Floating-point numbers

Memory pointers

Composite

Data types that are built as

structured collections of primitive types

using other composite types already defined

Examples are:

Array

Record or Tuple

Union

Tuple

Represents a finite ordered list of elements. Can contain different data types. Immutable. Tuple with

length n is called as “n-tuple”.

Some tuples have special names:

length 0 : empty-tuple or null-tuple

length 1 : singleton

length 2 : couple

length 3 : triple

From Sahithyan's S1

https://s1.sahithyan.dev

Abstract

Data types that are well defined in terms of properties and operations but not implementation.

Examples:

List

Set

Stack

Queue

Tree

Hash Table

Graph

List

Represents a countable number of values where the same value can occur more than once. Ordered.

Can include different data types. Mutable. Aka. iterable collection.

Defined methods:

isEmpty()

prepend(item)

append(item)

head()

get(i)

set(i)

tail()

Note

Lists in python can be considered as dynamically sized arrays. Methods other than above-

mentioned ones are implemented in python.

Set

Represents a collection of distinct objects. Unordered. Iterable. Mutable (but elements must be

immutable). No duplicate elements.

From Sahithyan's S1

https://s1.sahithyan.dev

Dictionary

Collection of key-value pairs. Unordered.

Stack

A “Last-In-First-Out” model.

Queue

A “First-In-First-Out” model. Implemented in Python as deque .

class Stack:

 def __init__(self):

 self.items = [] # to store stack elements

 def is_empty(self):

 # Return True if stack is empty

 return len(self.items) == 0

 def push(self, item):

 # Add item to top of stack

 self.items.append(item)

 def pop(self):

 # Remove and return top item from stack

 if not self.is_empty():

 return self.items.pop()

 return None

 def peek(self):

 # Return top item without removing it

 if not self.is_empty():

 return self.items[-1]

 return None

 def size(self):

 # Return number of items in stack

 return len(self.items)

Example usage:

stack = Stack()

stack.push(1)

stack.push(2)

print(stack.pop()) # Returns 2

print(stack.peek()) # Returns 1

From Sahithyan's S1

https://s1.sahithyan.dev

Tree

Holds a set of nodes. Each node holds a value. Each node can have child nodes.

Binary Tree

Tree with the restriction of at most 2 child nodes per node. Binary tree can be implemented similarily

as a tree class. Instead of a children array, left and right nodes are preferred.

Complete Binary Tree

A binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far

left as possible.

class Tree:

 def __init__(self, value=None):

 # Initialize node with value and empty list of children

 self.value = value

 self.children = []

 def add_child(self, child_node):

 # Add a child node to this node

 self.children.append(child_node)

 def remove_child(self, child_node):

 # Remove a child node from this node

 self.children.remove(child_node)

 def get_value(self):

 # Get the value stored in this node

 return self.value

 def get_children(self):

 # Get list of child nodes

 return self.children

Example usage:

tree = Tree(1)

child1 = Tree(2)

child2 = Tree(3)

tree.add_child(child1)

tree.add_child(child2)

From Sahithyan's S1

https://s1.sahithyan.dev

Binary Heap

A binary heap is complete binary tree where items are stored in a way such that the value in a parent

node is greater/smaller than values in its 2 children nodes. Can be represented by a binary tree or an

array. 2 types:

Max heap: when the parent node value is greater than its children nodes

Min heap: when the parent node value is smaller than its children nodes

Can be represented by either an array or a binary tree.

Array representation

If a parent node is stored at index , the left child is stored at index and the right child is stored

at index (assuming the indexing starts at 0).

Space efficient representation.

Algorithms

An algorithm is a finite set of instructions, used to solve a problem.

Note

In s1, only searching and sorting algorithms are discussed.

Searching algorithms

Iterative sequential search

Recursive sequential search

def iterative_sequential_search(a_list, item):

 for i in range(len(a_list)):

 if a_list[i] == item:

 return i

 return -1

def recursive_sequential_search(a_list, item, offset=0):

 if len(a_list) == offset - 1:

 return False

From Sahithyan's S1

https://s1.sahithyan.dev

Binary search

Works in a sorted array.

Time complexities

Algorithms Best Average Worst

Sequential search O(1) O(n) O(n)

Binary search O(1) O(log n) O(log n)

Sorting algorithms

A sorting algorithm reorganizes a collection of items into some order as defined by values intrinsic to

the items.

 if a_list[offset] == item:

 return True

 return recursive_sequential_search(a_list, item, offset+1)

def binary_search(a_list, item):

 first = 0

 last = len(a_list) - 1

 found = False

 while first <= last and not found:

 mid = (first + last) // 2

 if a_list[mid] == item:

 found = True

 else:

 if item < a_list[mid]:

 last = mid - 1 # search in first half

 else:

 first = mid + 1 # search in second half

 if found:

 return mid

 else:

 return None

From Sahithyan's S1

https://s1.sahithyan.dev

Properties

���Number of swaps required

���Number of comparisons - represented using “big-o” notation

���Stability - it’s stable when relative order of the equal items are maintained.

���Recursive or iterative

���Amount of extra space

Bubble sort

Makes multiple passes through a collection and compare adjacent items to reorder those.

Selection sort

Iterates through the list to find the smallest (or highest) value. Swaps its position with the first (or last)

element. Then redo this starting for the remaining indices. An improved version of bubble sort.

Shell sort

A specific “gap” is chosen. Start from any index (which is smaller than gap), and use insertion sort to

sort the elements that are gap number of indices away. Redo this after reducing the gap. Repeat until

the gap eventually becomes 1.

The performance depends on the sequence of gaps chosen.

def bubble_sort(arr: list[int | float]):

 sorted_index_count = 0

 while sorted_index_count < len(arr):

 for i in range(len(arr)-sorted_index_count-1):

 if arr[i] > arr[i+1]:

 arr[i], arr[i+1] = arr[i+1], arr[i]

 sorted_index_count += 1

def selection_sort(arr):

 for current_starting_index in range(len(arr)):

 smallest_index = current_starting_index

 for i in range(current_starting_index + 1, len(arr)):

 if arr[i] < arr[smallest_index]:

 smallest_index = i

 arr[smallest_index], arr[current_starting_index] = arr[current_starting_index], arr[smalle

a modified version of insertion sort

From Sahithyan's S1

https://s1.sahithyan.dev

Merge sort

Recursive algorithm that continually splits a list in half and sorts them.

If the list is empty or has one item, it is sorted

If the list has more elements, the list is split in the middle and merge sort is recursively used on those

parts

Once sorted, the halves are combined to create a sorted list

def gap_insertion_sort(a_list, start_index, gap):

 while start_index < len(a_list):

 pointer = start_index

 while pointer >= gap and a_list[pointer - gap] > a_list[pointer]:

 # swap the position

 a_list[pointer], a_list[pointer - gap] = \

 a_list[pointer-gap], a_list[pointer]

 pointer -= gap

 start_index += gap

def shell_sort(a_list):

 for gap in range(4, 0, -1):

 for starting_index in range(0, gap):

 gap_insertion_sort(a_list, starting_index, gap)

def merge_sort(a_list):

 if len(a_list) < 2: # then it's sorted

 return a_list

 # break at the middle and sort

 mid_index = len(a_list)//2

 left_half = merge_sort(a_list[:mid_index])

 right_half = merge_sort(a_list[mid_index:])

 # merge the sides

 cursor_left = 0

 cursor_right = 0

 sorted_list = []

 # merging step 1: loop through each side and add the smallest

 while cursor_left < len(left_half) and cursor_right < len(right_half):

 if left_half[cursor_left] > right_half[cursor_right]:

 sorted_list.append(right_half[cursor_right])

 cursor_right += 1

 else:

From Sahithyan's S1

https://s1.sahithyan.dev

Quick sort

Recursive algorithm that use the divide and conquer strategy to continually split a list around a

selected value called the split point.

Selects a pivot (a value in the list)

List is partitioned into 2 parts

With the elements lesser than the pivot

With the elements greater than the pivot

The partitions are recursively sorted

 sorted_list.append(left_half[cursor_left])

 cursor_left += 1

 # merging step 2: add left over items

 while cursor_left < len(left_half):

 sorted_list.append(left_half[cursor_left])

 cursor_left += 1

 while cursor_right < len(right_half):

 sorted_list.append(right_half[cursor_right])

 cursor_right += 1

 return sorted_list

def quick_sort(a_list, first, last):

 # Only proceed if there are at least 2 elements to sort

 if first < last:

 # Get the partition point and sort the pivot into its final position

 split_point = partition(a_list, first, last)

 # Recursively sort the left portion (elements smaller than pivot)

 quick_sort(a_list, first, split_point - 1)

 # Recursively sort the right portion (elements larger than pivot)

 quick_sort(a_list, split_point + 1, last)

def partition(a_list, first, last):

 # Choose the first element as the pivot

 pivot_value = a_list[first]

 # Set initial positions for left and right markers

 left_mark = first + 1

 right_mark = last

 done = False

 while not done:

 # Move left marker right until we find an element greater than pivot

From Sahithyan's S1

https://s1.sahithyan.dev

Heap sort

Uses a binary heap.

Similar to selection sort where a search is done to find the item with the minimum value and this item

is placed at the beginning of the list. The same process is repeated for remaining items.

Steps:

���A max-heap is built from the input data

���Largest item is stored at the root of the heap. Replace it with the last item of the heap.

���Size of the heap is reduced by 1

���Heapify the root of the tree

���Repeat steps 2-4 until the size of the heap is greater than 1.

The heapify procedure can be applied to a node only if its children nodes are heapified. So the

heapification must be performed in the bottom-up order.

 while left_mark <= right_mark and a_list[left_mark] <= pivot_value:

 left_mark = left_mark + 1

 # Move right marker left until we find an element less than pivot

 while a_list[right_mark] >= pivot_value and right_mark >= left_mark:

 right_mark = right_mark - 1

 # If markers have crossed, partitioning is complete

 if right_mark < left_mark:

 done = True

 else:

 # Swap elements at left and right markers since they are in wrong positions

 temp = a_list[left_mark]

 a_list[left_mark] = a_list[right_mark]

 a_list[right_mark] = temp

 # Place pivot in its final position by swapping with right_mark

 temp = a_list[first]

 a_list[first] = a_list[right_mark]

 a_list[right_mark] = temp

 # Return the position of the pivot

 return right_mark

To heapify subtree rooted at index i. Heap size is n.

def heapify(a_list, n, i):

From Sahithyan's S1

https://s1.sahithyan.dev

Time complexities

Algorithms Best Average Worst

Bubble sort O(n) O(n^2) O(n^2)

Selection sort O(n^2) O(n^2) O(n^2)

Insertion sort O(n) O(n^2) O(n^2)

Shell sort O(n) O((n log n)^2) O((n log n)^2)

Merge sort O(n log n) O(n log n) O(n log n)

Quick sort O(n log n) O(n log n) O(n^2)

 largest = i # Initialize largest as root

 l = 2 * i + 1 # left = 2*i + 1

 r = 2 * i + 2 # right = 2*i + 2

 # See if left child of root exists and is > root

 if l < n and a_list[i] < a_list[l]:

 largest = l

 # See if right child of root exists and is > root

 if r < n and a_list[largest] < a_list[r]:

 largest = r

 # Change root, if needed

 if largest != i:

 a_list[i],a_list[largest] = a_list[largest],a_list[i] # swap

 # Heapify the root.

 heapify(a_list, n, largest)

def heap_sort(a_list):

 n = len(a_list)

 # Build a maxheap. Since last parent will be

 # at ((n//2)-1) we can start at that location.

 for i in range(n // 2 - 1, -1, -1):

 heapify(a_list, n, i)

 # One by one extract elements

 for i in range(n-1, 0, -1):

 a_list[i], a_list[0] = a_list[0], a_list[i] # swap

 heapify(a_list, i, 0)

From Sahithyan's S1

https://s1.sahithyan.dev

Algorithms Best Average Worst

Heap sort O(n log n) O(n log n) O(n log n)

Software Engineering

Software

Refers to all the related things that are required to make a software system work.

Includes:

programs

configuration files

system and user documentation

user support system

bug fixes and updates

Software engineering

An engineering discipline that is concerned with all aspects of software production. From the initial

stage of writing the requirements to maintaining it while being used.

Software process

Set of activities that are associated with the development of a software product.

Fundamental activities that are common to all types of software development processes:

Specification - defining the software to be produced and the runtime constraints

Development - design and development of the software

Validation - testing phase to check if the software meets the specifications

Evolution - software is modified to adapt to new specifications

Waterfall

All before-mentioned activities are done sequentially, as clear separate phases. One phase is

completed before the next phase is started.

From Sahithyan's S1

https://s1.sahithyan.dev

Iterative & incremental

System is developed in iteration. Smaller parts of the system is completed in each iteration, that

includes:

Small amount of requirements specification

Design and development for the specification

Validation for the developed parts

Component based

Existing components are combined to implement the system. Main concentration is on the

integration of the components.

Quality of software

Can be measured using these aspects:

Maintainability - how easy it is to making changes

Dependability - how secure, reliable it is to failures or other unusual activities

Efficiency - how efficiently hardware resources (such as memory, processor time, disk space) are

used

Usability - how easy it is to use the software from user’s perspective

Robustness - how resilient it is to invalid inputs

Challenges in software engineering

Complexity

Essential - inherent, difficult to overcome

Accidental - not inherent, can be overcome

Conformity

Changeability - expected to be changeable to greater extent

Invisibility - not visualizable

Can’t guarantee defect free software - no amount of testing can prove absence of defects

From Sahithyan's S1

https://s1.sahithyan.dev

	Introduction
	Terminology
	Bit
	Byte
	Octet vs Byte

	Information

	Number Systems
	Base (or radix)
	Commonly used number systems
	Conversion between number systems
	10 —> n
	Integer part
	Fractional part

	n —> 10
	2 —> 8
	2 —> 16
	16 —> 2
	8 —> 2
	8 <—> 16

	Confusion about unit prefixes

	Data Representation
	Most Significant Bit (MSB)
	Least Significant Bit (LSB)
	Number of states
	Word
	Word size
	Representation methods
	Numerical
	Non-numerical

	Integers
	Unsigned integers
	Signed integers
	One’s complement
	One’s complement system

	Two’s complement
	Represent n in two’s complement

	Floating-point Numbers
	Single precision
	Sign bit
	Exponent
	Mantissa

	Double precision
	Sign bit
	Exponent
	Mantissa

	Strings
	Commonly used encodings
	ASCII
	Unicode

	Data Types
	Primitive
	Composite
	Tuple

	Abstract
	List
	Set
	Dictionary
	Stack
	Queue
	Tree
	Binary Tree
	Complete Binary Tree

	Binary Heap
	Array representation

	Algorithms
	Searching algorithms
	Iterative sequential search
	Recursive sequential search
	Binary search
	Time complexities

	Sorting algorithms
	Properties
	Bubble sort
	Selection sort
	Shell sort
	Merge sort
	Quick sort
	Heap sort
	Time complexities

	Software Engineering
	Software
	Software engineering
	Software process
	Waterfall
	Iterative & incremental
	Component based

	Quality of software
	Challenges in software engineering

