
Interning

Introduction

Interning is re-using objects of equal value on-demand instead of creating new objects.

This is done for memory efficiency. Frequently used for numbers and strings in different

programming languages.

a = 120

b = 120

print(a is b) # True

c = 2000

d = 2000

print(c is d) # False

In the above code, 120 is intered by the Python interpreter but not 2000 . Python’s

integer interning is done only for numbers in the range: [-5, 256]

Python interpreter also interns small strings.

a = "abcd"

b = "abcd"

print(a is b) # True

Both text are the same

c = "Lorem ipsum dolor sit amet consectetur adipisicing elit. Consequuntur perferendis iste ipsa nat

d = "Lorem ipsum dolor sit amet consectetur adipisicing elit. Consequuntur perferendis iste ipsa nat

print(c is d) # False

Strings in python can be manually interned using sys.intern function.

a,b=8,8

c=8

d=8

Likewise, in the above code, only 1 integer object is created.

Practice Resources

Programs

The programs are listed in no specific order.

1. is prime number: A program that takes in a number and outputs whether its a prime

number or not.

2. factors: Take in a number from user. Output all of its factors.

3. n-th factorial: A program that takes in a number and outputs n-th factorial.

4. is perfect number: A program that takes in a number and outputs whether its a perfect

number.

5. fibonacci numbers: A program that takes in a number and prints all fibonacci numbers

less than or equal to .

6. determinant of matrix: Take in a matrix from user. Output the determinant of the matrix.

First try for . Then go higher-ordered matrices.

7. pascal’s triangle: Take from user input. Print pascal’s triangle to rows.

8. is valid palindrome: Take a string input from user. Output if the input is palindrome or not.

A phrase is a palindrome if, after converting all uppercase letters into lowercase letters and

removing all non-alphanumeric characters, it reads the same forward and backward.

Alphanumeric characters include letters and numbers. Try not to use [::-1] .

9. armstrong numbers: Take from user input. Print all armstrong numbers (in base 10, of

course) between 0 and (inclusive).

10. letter analysis: Take a text input from user. Find how many times each letter is being used

in that string. Use a dictionary to store the data. Output the final results. Try to read the text

from a .txt file as well.

11. word length analysis: Take a string input from user. Print length of each word separated by

a space. Try to include the summary using a dictionary .

12. letter expanding: A program that converts b3j8k2 to bbbjjjjjjjjkk. The number can be 1 to

99.

13. binary addition: Take in 2 numbers in binary (as strings) and output the sum of both

numbers. Try not to use bin function.

14. big integer addition: Given a very large integer represented as a list, where each digits[i]

is the digit of the integer. The digits are ordered from most significant to least significant

in left-to-right order. Increment the large integer by one and return the resulting array of

digits. Don’t construct a int object.

Platforms

Codewars - https://codewars.com (my most preferred one)

HackerRank - https://hackerrank.com

Leetcode - https://leetcode.com (my least preferred one)

Hard Problems

If a problem from one of these platforms feels too hard for you, you can just skip and

do another problem.

One’s & Two’s Complement

One’s complement

The ones’ complement of a binary number is the value obtained by flipping all the bits

in the binary representation of the number.

If one’s complement of is , then one’s complement of is .

Binary representation of will include all s.

One’s complement system

In which negative numbers are represented by the inverse of the binary representations

of their corresponding positive numbers. First bit denotes the sign of the number.

Positive numbers are the denoted as basic binary numbers with as the MSB.

Negative values are denoted by the one’s complement of their absolute value.

For example, to find the one’s complement system representation of , one’s

complement of must be found. . One’s complement of is .

Two’s complement

In which negative numbers are represented using the MSB (sign bit).

If MSB is:

: negative

: positive

Positive numbers are represented as basic binary numbers with an additional as the

sign bit.

For example:

Following equation can be used to convert a number in two’s complement form to

decimal.

Steps

1. Starting with the absolute binary representation of the number

2. Add a leading bit being a sign bit

3. Find the one’s complement: flip all bits (which effectively subtracts the value from -1)

4. Add 1, ignoring any overflows

Floating-point representation

IEEE 754 standard.

2 types:

single precision

double precision

Single precision

Uses bits.

sign bit - bit

exponent - bit

mantissa - bit

Sign bit

 if positive or zero. if negative.

Exponent

Exponent field range - . In this range is defined for normal numbers.

and are reserved for subnormal, infinite, signed zeros and NaN.

To support negative exponents, we subtract (half of) from this range.

. This range is the representable range.

Mantissa

In scientific notation, the part that doesn’t contain the base and the power.

In binary scientific notation, there will always be exactly one bit before the dot. So we

don’t include that one.

Example

Take .

In binary:

In binary scientific notation:

Add to exponent:

Convert exponent to binary

Write the final result:

Take .

In binary:

In binary scientific notation:

Add to exponent:

Convert exponent to binary

Write the final result:

Double precision

Uses bits.

sign bit - bit

exponent - bit

mantissa - bit

Sign bit

if positive or zero. if negative.

Exponent

Exponent field range - . In this range is defined for normal numbers.

and are reserved for subnormal, infinite, signed zeros and NaN.

To support negative exponents, we subtract (half of) from this range.

. This range is the representable range.

Mantissa

In scientific notation, the part that doesn’t contain the base and the power.

In binary scientific notation, there will always be exactly one bit before the dot. So we

don’t include that one.

Example

Take .

In binary:

In binary scientific notation:

Add to exponent:

Convert exponent to binary:

Write the final result:

Take .

In binary:

In binary scientific notation:

Add to exponent:

Convert exponent to binary:

Write the final result:

This PDF is saved from https://s1.sahithyan.dev

