Introduction of Nanomaterials

Introduction

A material with

- any external dimension in the nanoscale (size range from approximately $1-100$ nm).
- having internal structure or surface structure in the nanoscale.

At nanoscale, materials exhibit very unusual and very interesting properties. Examples: Graphene has very high young's modulus and very high carrier mobility.

Nano object

An object with any external dimension is in the nanoscale.

Examples: carbon nanotube, bucky ball.

Nano structured material

A material where its internal or surface structure is in the nano scale.

Examples: $TiO₂$ nanotube films.

Nano in nature

- Lotus leaves being superhydrophobic
- Gecko adhesive system

Nanoscience

Study of structures and materials on the nanoscale.

Nanotechnology

Development of materials and devices by exploiting the characteristics of particles on the nanoscale.

Applications

- Nanoscale transistors
	- Higher-performance
	- Improved energy efficiency
- Magnetic data storage
	- High data density and data capacity
	- Ultra compact
- Nanomedicine and drug delivery
- Energy storage

Preparation of nanomaterials

Top-down approach

Nanoscale dimensions are created using larger components, by externally controlled devices.

Examples: Lithography, Etching techniques.

Photolithography

Can be used to create nanoscale patterns in thin films or bulk substrates.

The steps:

1. Coat Si wafer with a photosensitive material.

A material which changes its properties when exposed to electromagnetic radiation

- 2. Allow the radiation to pass through the mask on to photosensitive material.
- 3. Developer solution removes either reacted or unreacted material.
- 4. The silicon wafer is etched to transfer the pattern onto silicon wafer.
- 5. Photosensitive material is removed.

Bottom-up approach

Molecular components arrange themselves into more complex nano materials/objects.

Examples: Molecular self-assembly, Chemical vapour deposition

Graphene

Carbons arranged to a hexagonal network. 2D crystal based. Has 3 fold symmetry.

Unit Cell

- A rhombus with 120° .
- Lattice parameter is $2d\cos 30\degree$ where d is the $\rm C-C$ bond length.
- 2 atoms per unit cell.

Note

Single layer of graphene was discovered using scotch tape method and the discovery won a Nobel prize in 2010.

Synthesis

- Top-down approaches
	- Exfoliation (eg: Scotch tape method)
- Bottom-up approaches
	- Chemical vapor deposition

Note

Graphene has a band gap of 0 .

Carbon Nanotubes

A rolled up sheet of graphene.

Classifications

Based on structure

- 1. Single wall carbon nanotubes (SWNT)
- 2. Multi-walled carbon nanotubes (MWNT) Similar to graphite but rolled up as a set of sheets.

Based on Chirality

Chirality means the way that graphene sheet is oriented with respect to the axis of carbon nanotube.

Achiral

Have mirror planes. Has 2 types.

- 1. Armchair
- 2. Zigzag

Armchair

Circumference has a repeating armchair structure.

Zigzag

Circumference has a repeating zigzag structure.

Chiral

No mirror planes. Definition for the chiral type is later explained.

Definitions

Equivalent Atoms

Equivalent atoms means the atoms having the same surrounding.

In graphene, next-near neighbours are equivalent atoms.

When a graphene sheet is rolled to create a CNT, only equivalent atoms can be connected.

Primitive Vectors

Vectors used to describe a unit cell.

For graphene, any 2 adjacent sides of the unit cell (rhombus) can be used as the primitive vectors.

Lattice Vectors

Any vector connecting 2 equivalent atoms. A lattice vector can be expressed in terms of primitive vectors.

Chiral Vector

The vector that constructs the circumference of a CNT. Also called as Circumferential vector.

(n,m) notation

If the chiral vector can be expressed as $na_1 + ma_2$ where a_1, a_2 are the primitive vectors, then the notation for the nanotube is (n, m)

- \cdot $n = 0 \vee m = 0$: zigzag tube
- \cdot $n = m$: armchair tube
- Otherwise: chiral tube

Chiral Angle

Angle between the chiral vector and nearest zigzag angle.

For a (n, m) tube where $n > 0$ and $n \ge m \ge 0$:

$$
\theta=\tan^{-1}\left(\frac{\sqrt{3}m}{2n+m}\right)
$$

- \cdot $\theta = 30^{\circ}$: armchair tube
- \cdot $\theta = 0$ ° : zigzag tube
- \cdot 0° $< \theta < 30$ ° : chiral tube

Chiral Vector Length

For a (n, m) tube, the chiral vector's length is given by:

$$
|{\rm CH}| = a\sqrt{n^2+m^2+nm}
$$

Here a is the bond length of C-C.

Diameter of CNT

The diameter can be expressed by:

$$
D=\frac{|{\rm CH}|}{\pi}=\frac{a}{\pi}\sqrt{n^2+m^2+nm}
$$

Properties

- Mechanical properties
	- High young's modulus: depends on tube diameter, multi-walled or single-walled but not tube chirality.
	- Sustains higher strain
- Electrical properties
	- Depends on chirality and size
	- $\,\circ\,$ Exhibits superconductivity at $20\mathrm{K}$
	- Band structure changes with chirality
- Thermal properties
	- Conducts thermal energy only in the axial direction; radial direction is insulating

Chirality dependent electrical properties

For a (n, m) tube:

- If $n = m$, its armchair typed and is metallic (good conductors)
- If $n-m$ is a integer multiple of 3 : small band gap semiconductors
- Else: large band gap semiconductors

Band gap decreases as the radius of the diameter increases.

This PDF is saved from https://s1.sahithyan.dev