Skip to content
Sahithyan's S1
Sahithyan's S1 — Electrical Fundamentals

AC Theory

Say vv is alternating as in v=Vmsin(ωt+ϕ)v=V_{m}\sin(\omega{t}+\phi).

Why AC instead of DC?

  • Production of AC is less expensive
  • AC devices are efficient and require less maintenance

Peak value

Maximum instantaneous value. VmV_m in the example.

Peak-to-peak value

Maximum variation between maximum positive and negative instantaneous values. For a sinusoidal waveform, this is twice the peak value. 2Vm2V_m in the example.

Mean value

vmean=1TT0T0+Tv(t)dtv_{\text{mean}}= \frac{1}{T} \int_{T_0}^{T_0+T}{v(t)\text{d}t}

Here:

  • T0T_0 is the starting time of a cycle
  • TT is the periodic time

For any symmetric waveform, mean value is 00.

Average value

Mean value of the rectified version of a waveform.

For symmetric waveforms, half-cycle mean value is taken as the average value.

vaverage=2TT0T0+T2v(t)dtv_{\text{average}}= \frac{2}{T} \int_{T_0}^{T_0+\frac{T}{2}}{v(t)\,\text{d}t}

For sinusoidal waveforms, from the example:

vaverage=2TT0T0+T2Vmsin(ωt+ϕ)dtv_{\text{average}} = \frac{2}{T} \int_{T_0}^{T_0+\frac{T}{2}}{V_{m}\sin(\omega{t}+\phi)\,\text{d}t} =2πVm=0.637Vm= \frac{2}{\pi}V_m = 0.637V_m

rms value

Aka. effective value. rms value is always used to express the magnitude of a time varying quantity.

vrms=1TT0T0+Tv(t)2dtv_{\text{rms}}= \sqrt{ \frac{1}{T} \int_{T_0}^{T_0+T}{v(t)^2\,\text{d}t} }

For sinusoidal waveforms:

vrms=Vm1TT0T0+Tsin2(ωt+ϕ)dt=Vm2v_{\text{rms}}= V_m \sqrt{ \frac{1}{T} \int_{T_0}^{T_0+T}{\sin^2{(\omega{t}+\phi)}\,\text{d}t} } = \frac{V_m}{\sqrt{2}}

Instantaneous power

P=vi=i2RP=vi=i^2R

Form factor

Form factor=rms valueaverage value=Vm2×π2Vm=1.111\text{Form factor} = \frac{\text{rms value}}{\text{average value}} = {\frac{V_m}{\sqrt{2}}}\times{\frac{\pi}{2{V_m}}} =1.111

Peak factor

Peak factor=peak valuerms value=Vm×2Vm=1.412\text{Peak factor} =\frac{\text{peak value}}{\text{rms value}} ={V_m}\times{\frac{\sqrt{2}}{V_m}} =1.412