Skip to content
Sahithyan's S1
Sahithyan's S1 — Electrical Fundamentals

Impedance & Admittance

Impedance (Z)

Z=VI=R+jXZ=\frac{V}{I}=R+jX

Here:

  • RR: Resistance
  • XX: Reactance

Admittance (Y)

Inverse of impedance.

Y=1Z=IV=G+jBY=\frac{1}{Z}=\frac{I}{V}=G+jB

Here:

  • GG: Conductance
  • BB: Susceptance

From the definitions:

G=RR2+X2  B=XR2+X2G=\frac{R}{R^2+X^2} \;\land B=-\frac{X}{R^2+X^2}

For simple circuit elements

Resistor

Let i=Imsin(ωt+ϕ0)i=I_m\sin{(\omega t + \phi_0)} is applied across a resistor with resistance RR. From Ohm’s law:

v=RImsin(ωt+ϕ0)    ZR=Rv=RI_m\sin{(\omega t + \phi_0)} \implies Z_R = R

No changes in frequency, phase angle. vv is in phase with ii. RR doesn’t have reactance.

Inductor

Let i=Imsin(ωt+ϕ0)i=I_m\sin{(\omega t + \phi_0)} is applied across an inductor with inductance LL.

v=LωImsin(ωt+(ϕ0+π2))    ZL=jωLv=L\omega I_m\sin{\bigg(\omega t + \Big(\phi_0+\frac{\pi}{2}\Big)\bigg)} \implies Z_L = j\omega L

Reactance of the inductor is XL=LωX_L=L\omega.

Capacitor

Let i=Imsin(ωt+ϕ0)i=I_m\sin{(\omega t + \phi_0)} is applied across an capacitor with capacitance cc.

v=Imcωsin(ωt+(ϕ0π2))    ZC=j1cωv=\frac{I_m}{c\omega} \sin{(\omega t + (\phi_0 - \frac{\pi}{2}))} \implies Z_C = -j\frac{1}{c\omega}

Reactance of the capacitor (capacitive reactance) is Xc=1cωX_c=-\frac{1}{c\omega}.

For complex circuit elements

For a series circuit

Resultant impedance is the sum of each component’s impedance.

For a parallel circuit

Resultant admittance is the sum of each component’s admittance.