Skip to content
Sahithyan's S1
1
Sahithyan's S1 — Fluid Mechanics

Hydrostatic Pressure

At a point,

P=limδA0δFδAP = \lim_{\delta A \to 0} \frac{\delta F}{\delta A}

The hydrostatic pressure at a point is the same from all directions.

Consider the fluid element shown, containing the point AA.

PΔΔΔΔPPxzsysxz

From the image: sinθ=ΔzΔs    cosθ=ΔxΔs\sin{\theta}=\frac{\Delta{z}}{\Delta{s}}\;\land\;\cos{\theta}=\frac{\Delta{x}}{\Delta{s}}

For equilibrium:

Px(ΔyΔz)Ps(ΔyΔs)sinθ=0    Px=PsP_x(\Delta{y}\Delta{z})-P_s(\Delta{y}\Delta{s})\sin{\theta}=0 \implies P_x=P_s Pz(ΔxΔy)Ps(ΔyΔs)cosθ12ΔxΔyΔzρg=0    Pz=Ps+12ΔzρgP_z(\Delta{x}\Delta{y})-P_s(\Delta{y}\Delta{s})\cos{\theta}-\frac{1}{2}\Delta{x}\Delta{y}\Delta{z}\rho g=0 \implies P_z=P_s+\frac{1}{2}\Delta{z}\rho g

As all Δx,Δy,Δz\Delta{x},\Delta{y},\Delta{z} approaches 00: Pz=PsP_z=P_s. Therefore Px=Pz=PsP_x=P_z=P_s

Let pp be the pressure at the point A(x,y,z)A\equiv (x,y,z).

p=f(x,y,z)p = f(x,y,z) dp=pxdx+pydy+pzdzdp = \frac{\partial p}{\partial x} \text{d}x + \frac{\partial p}{\partial y} \text{d}y + \frac{\partial p}{\partial z} \text{d}z

By considering equilibrium of this fluid element containing AA.

Fluid element containing point A

In the xx direction,

(ppxΔx2)ΔyΔz(p+pxΔx2)ΔyΔz=0\bigg( p - \frac{\partial p}{\partial x} \frac{\Delta{x}}{2} \bigg) \Delta{y} \Delta{z} - \bigg( p + \frac{\partial p}{\partial x} \frac{\Delta{x}}{2} \bigg) \Delta{y} \Delta{z} = 0 px=0\frac{\partial p}{\partial x} = 0

Similarly py=0\frac{\partial p}{\partial y} = 0 can be proven.

In the zz direction,

(ppzΔz2)ΔxΔy(p+pzΔz2)ΔxΔyΔxΔyΔzρg=0\bigg( p - \frac{\partial p}{\partial z} \frac{\Delta{z}}{2} \bigg) \Delta{x} \Delta{y} - \bigg( p + \frac{\partial p}{\partial z} \frac{\Delta{z}}{2} \bigg) \Delta{x} \Delta{y} - \Delta{x} \Delta{y} \Delta{z} \rho g = 0 pz=ρg\frac{\partial p}{\partial z} = -\rho g dp=ρgdzdp = -\rho g\,\text{d}z p=ρgdzp = -\int{\rho g\,\text{d}z}

Surface of constant pressure.

Pressure exerted by atmospheric air.

Measured in respect to atmospheric pressure.

Measured in respect to perfect vaccum.

Absolute Pressure=Atmospheric Pressure+Guage Pressure\text{Absolute Pressure} = \text{Atmospheric Pressure} + \text{Guage Pressure} P=ρgz+cP = -\rho gz + c P+ρgz=c=PP + \rho gz = c = P^{*}

A diagram showing the variation of pressure along a submerged surface.

Height of a particular fluid column that will produce the pressure at a point.

Pressure head=h=pγ\text{Pressure head} = h = \frac{p}{\gamma}

Suppose there are 2 points A,B\text{A},\text{B} with a height difference of hh.

P1=ρgz1+cP_1 = -\rho gz_1 + c

P2=ρgz2+cP_2 = -\rho gz_2 + c

P2P1=ρg(z2z1)=ρg(h)=hρgP_2 - P_1 = -\rho g(z_2 - z_1) = -\rho g (-h) = h \rho g

P2=P1+hρgP_2 = P_1 + h \rho g