Skip to content
Sahithyan's S1
Sahithyan's S1 — Fluid Mechanics

Hydrostatic Pressure

At a point,

P=limδA0δFδAP = \lim_{\delta A \to 0} \frac{\delta F}{\delta A}

Pascal’s law

The hydrostatic pressure at a point is the same from all directions.

Proof

Consider the fluid element shown, containing the point AA.

PΔΔΔΔPPxzsysxz

From the image: sinθ=ΔzΔs    cosθ=ΔxΔs\sin{\theta}=\frac{\Delta{z}}{\Delta{s}}\;\land\;\cos{\theta}=\frac{\Delta{x}}{\Delta{s}}

For equilibrium:

Px(ΔyΔz)Ps(ΔyΔs)sinθ=0    Px=PsP_x(\Delta{y}\Delta{z})-P_s(\Delta{y}\Delta{s})\sin{\theta}=0 \implies P_x=P_s Pz(ΔxΔy)Ps(ΔyΔs)cosθ12ΔxΔyΔzρg=0    Pz=Ps+12ΔzρgP_z(\Delta{x}\Delta{y})-P_s(\Delta{y}\Delta{s})\cos{\theta}-\frac{1}{2}\Delta{x}\Delta{y}\Delta{z}\rho g=0 \implies P_z=P_s+\frac{1}{2}\Delta{z}\rho g

As all Δx,Δy,Δz\Delta{x},\Delta{y},\Delta{z} approaches 00: Pz=PsP_z=P_s. Therefore Px=Pz=PsP_x=P_z=P_s

Variation along directions

Proof

Let pp be the pressure at the point A(x,y,z)A\equiv (x,y,z).

p=f(x,y,z)p = f(x,y,z) dp=pxdx+pydy+pzdzdp = \frac{\partial p}{\partial x} \text{d}x + \frac{\partial p}{\partial y} \text{d}y + \frac{\partial p}{\partial z} \text{d}z

By considering equilibrium of this fluid element containing AA.

Fluid element containing point A

In the xx direction,

(ppxΔx2)ΔyΔz(p+pxΔx2)ΔyΔz=0\bigg( p - \frac{\partial p}{\partial x} \frac{\Delta{x}}{2} \bigg) \Delta{y} \Delta{z} - \bigg( p + \frac{\partial p}{\partial x} \frac{\Delta{x}}{2} \bigg) \Delta{y} \Delta{z} = 0 px=0\frac{\partial p}{\partial x} = 0

Similarly py=0\frac{\partial p}{\partial y} = 0 can be proven.

In the zz direction,

(ppzΔz2)ΔxΔy(p+pzΔz2)ΔxΔyΔxΔyΔzρg=0\bigg( p - \frac{\partial p}{\partial z} \frac{\Delta{z}}{2} \bigg) \Delta{x} \Delta{y} - \bigg( p + \frac{\partial p}{\partial z} \frac{\Delta{z}}{2} \bigg) \Delta{x} \Delta{y} - \Delta{x} \Delta{y} \Delta{z} \rho g = 0 pz=ρg\frac{\partial p}{\partial z} = -\rho g dp=ρgdzdp = -\rho g\,\text{d}z p=ρgdzp = -\int{\rho g\,\text{d}z}

Isobar

Surface of constant pressure.

Types of pressure

Atmospheric Pressure

Pressure exerted by atmospheric air.

Gauge Pressure

Measured in respect to atmospheric pressure.

Absolute Pressure

Measured in respect to perfect vaccum.

Absolute Pressure=Atmospheric Pressure+Guage Pressure\text{Absolute Pressure} = \text{Atmospheric Pressure} + \text{Guage Pressure}

Piezometric pressure

P=ρgz+cP = -\rho gz + c P+ρgz=c=PP + \rho gz = c = P^{*}

Pressure diagram

A diagram showing the variation of pressure along a submerged surface.

Pressure Head

Height of a particular fluid column that will produce the pressure at a point.

Pressure head=h=pγ\text{Pressure head} = h = \frac{p}{\gamma}

Pressure difference between 2 points

Suppose there are 2 points A,B\text{A},\text{B} with a height difference of hh.

P1=ρgz1+cP_1 = -\rho gz_1 + c

P2=ρgz2+cP_2 = -\rho gz_2 + c

P2P1=ρg(z2z1)=ρg(h)=hρgP_2 - P_1 = -\rho g(z_2 - z_1) = -\rho g (-h) = h \rho g

P2=P1+hρgP_2 = P_1 + h \rho g