Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Adjoint

Suppose A=(aij)n×nA=(a_{ij})_{n\times{n}}.

adjA=(Aij)n×nT\text{adj}A = (A_{ij})_{n\times{n}}^T

Where AijA_{ij} is the co-factor of aija_{ij}.

Properties

Suppose AA is a n×nn\times n matrix.

  • adj(I)=I\text{adj}(I)=I
  • adj(cA)=cn1adj(A)\text{adj}(cA)=c^{n-1}\text{adj}(A)
  • adj(AT)=(adj(A))T\text{adj}(A^T)=(\text{adj}(A))^T
  • adj(A)A=Aadj(A)=AI\text{adj}(A)\,A = A\,\text{adj}(A) = \lvert A \rvert I
  • A(adjA)=(adjA)A=AIA\,(\text{adj}A) = (\text{adj}A)\,A = \lvert{A}\rvert I