Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Determinant

Defined only for square matrices. Denoted by A\lvert A\rvert.

For 2x2

A=a11a12a21a22=a11a22a12a21\lvert A\rvert= \Bigg\lvert{ \, \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{matrix} \, } \Bigg\rvert = a_{11}a_{22} - a_{12}a_{21}

For higher order

Minor of an element

Suppose A=(aij)A=(a_{ij}).

Minor of an element aija_{ij}, is the matrix obtained by deleting ithi^{\text{th}} row and jthj^{\text{th}} column of AA. Denoted by MijM_{ij}.

Co-factor of an element

Suppose A=(aij)A=(a_{ij}).

Co-factor of an element aija_{ij}, is defined as (commonly denoted as AijA_{ij}):

Aij=(1)i+jMijA_{ij} = (−1)^{i+j}\,\lvert M_{ij}\rvert

Definition

If A=(aij)n×nA = (a_{ij})_{n\times n} then the determinant of AA is defined by:

A=j=1naijAij\lvert A\rvert= \sum_{j=1}^{n}{a_{ij}A_{ij}}

For some i[1,n]i \in [1,n].

Properties of determinants

  • AT=A\big|A^{T}\big|=|A|
  • Every element of a row or column of a matrix is 00 then the value of its determinant is 00.
  • If 2 columns or 2 rows of a matrix are identical then its determinant is 00.
  • If A and B are two square matrices then AB=AB\lvert{AB}\rvert=\lvert{A}\rvert\lvert{B}\rvert.
  • The value of the determinant of a matrix remains unchanged if a scalar multiple of a row or column is added to any other row or column.
  • If a matrix BB is obtained from a square matrix AA by an interchange of two columns or rows: B=A\lvert{B}\rvert=−\lvert{A}\rvert.
  • If every entry in any row or column is multiplied by kk, then the whole determinant is multiplied by kk.

Composition

abc1+c2def1+f2ghi1+i2=abc1def1ghi1+abc2def2ghi2\begin{vmatrix} a & b & c_1 + c_2 \\ d & e & f_1 + f_2 \\ g & h & i_1 + i_2 \end{vmatrix} = \begin{vmatrix} a & b & c_1 \\ d & e & f_1 \\ g & h & i_1 \end{vmatrix} + \begin{vmatrix} a & b & c_2 \\ d & e & f_2 \\ g & h & i_2 \end{vmatrix}

In relation with eigenvalues

For a n×nn\times n matrix A with nn number of eigenvalues:

A=i=1nλi|A|=\prod_{i=1}^{n}{\lambda_i}