Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Diagonalization

Similar matrices

2 square matrices AA and BB of the same order, are similar iff there exists an invertible matrix PP such that:

B=P1APB=P^{-1}AP

Properties

  • Similarity of 2 matrices is commutative.
  • Similar matrices have the set of eigenvalues.
  • If AA and BB are similar, then A2A^2 and B2B^2 are similar.

Definition

A matrix AA is diagonalizable if it is similar to a diagonal matrix.

D,P   s.t. D=P1AP\exists\, D,P\;\text{ s.t. } D = P^{-1}AP

Here:

  • DD is a diagonal matrix
  • PP is an invertible matrix

Steps

  • Find eigenvalues of An×nA_{n\times n}: λ1,λ2,,λn\lambda_1,\lambda_2,\dots,\lambda_n
  • Find corresponding eigenvectors: X1,X2,,XnX_1,X_2,\dots,X_n
  • Construct PP by joining the eigenvectors as columns
P=(X1X2Xn)n×n        D=(λ1λn)P=(X_1 X_2 \dots X_n)_{n\times n} \;\; \land \;\; D= \begin{pmatrix} \lambda_1 \\ & \ddots \\ & & \lambda_n \\ \end{pmatrix}

Uses

Finding integer powers

Suppose An×nA_{n\times n} is diagonalizable, and kRk\in\mathbb{R}.

A=P1DP    Ak=P1DkPA = P^{-1}DP \implies A^k = P^{-1}D^kP