Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Matrix Multiplication

Suppose A=(aij)m×pA=(a_{ij})_{m\times{p}} and B=(bij)q×nB=(b_{ij})_{q\times{n}}. Matrix multiplication is only defined when q=pq=p here.

A×B=C=(cij)m×n    where    cij=k=1paik×bkjA\times{B}=C =(c_{ij})_{m\times{n}} \;\;\text{where} \;\; c_{ij} = \sum_{k=1}^{p}{a_{ik}\times b_{kj}}

Properties of matrix multiplication

A,B,C,IA,B,C,I matrices must be chosen so that below-mentioned products are defined.

  1. Associative: A(BC)=(AB)CA(BC) = (AB)C
  2. Right distributive over addition: (A+B)C=AC+BC(A+B)C=AC+BC
  3. Left distributive over addition: C(A+B)=CA+CBC(A+B)=CA+CB
  4. AI=IA=AAI=IA=A