Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Matrix Norms

Let An×nA_{n\times n}. A norm of AA is denoted by A||A||.

Definitions

Suppose A=(aij)m×nA=(a_{ij})_{m\times n} for all the definitions below.

1-norm

Maximum of the absolute column sums.

A1=max{i=1maij  ;  j[1,n]}{\lVert A \rVert}_1 = \max \bigg\{ \sum_{i=1}^{m} {\lvert a_{ij} \rvert} \;;\; j \in [1,n] \bigg\}

2-norm

Square root of the sum of all elements squared. Aka. Euclidean norm, or Frobenius norm. Defined for non-square matrices as well.

(A2)2=(AE)2=i=1mj=1n(aij)2\Big({\lVert A \rVert}_2\Big)^2= \Big({\lVert A \rVert}_E\Big)^2= \sum_{i=1}^{m} \sum_{j=1}^{n} {(a_{ij})^2}

Infinity norm

Maximum of the absolute row sums.

A=max{j=1naij  ;  i[1,n]}{\lVert A \rVert}_\infty = \max \bigg\{ \sum_{j=1}^{n} {\lvert a_{ij} \rvert} \;;\; i \in [1,n] \bigg\}

Vector norm

Norm defined for column vectors.

Induced norm

Aka. operator norm, subordinate norm.

Suppose A=(aij)m×nA=(a_{ij})_{m\times n}. The induced norm is defined for AA with respect to a given norm, \lVert \rVert.

Aind=maxX=1  AX{\lVert A \rVert}_\text{ind} = \max_{\lVert X \rVert = 1}\; \lVert AX \rVert

Properties of Norms

Works for all types of norms.

Suppose A,BA,B are m×nm\times n ordered.

  1. A0\lVert A \rVert \ge 0
  2. A=0    A=0\lVert A \rVert = 0 \iff A=0
  3. kA=k×A\lVert kA \rVert=\lvert k\rvert\times \lVert A \rVert
  4. A+BA+B\lVert A + B\rVert \le \lVert A \rVert + \lVert B \rVert (triangle inequality)
  5. ABA×B\lVert AB \rVert \le \lVert A\rVert\times \lVert B\rVert

Unit Ball

A unit ball in Rn\mathbb{R}^n with respect to a norm \lVert \rVert.

{X    XRn,  X1}\big\{ X \; | \; X \in \mathbb{R}^n , \; \lVert X \rVert \le 1 \big\}

Unit disc

When n=2n=2, unit ball is also called the unit disc.