Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Solution of Non-homogenous Systems

Consider the system: An×nXn×1=Bn×1A_{n\times n}X_{n\times 1}=B_{n\times 1}.

  • A0    Rank A=Rank (AB)=n    unique solution exists|A| \neq 0 \iff \text{Rank }A = \text{Rank }(A|B)=n \iff \text{unique solution exists}
  • A=0    no solutioninfinitely many solutions|A|=0 \implies \text{no solution} \lor \text{infinitely many solutions}
  • Rank A<Rank (AB)    no solutions\text{Rank }A <\text{Rank }(A|B) \implies \text{no solutions}
  • Rank A=Rank (AB)<n    infinitely many solutions\text{Rank }A =\text{Rank }(A|B) <n \implies \text{infinitely many solutions}

Methods

Method 1: Direct approach

Used when coefficient matrix AA is invertible. It means the system has a unique set of solutions.

AX=B    X=A1BAX=B \implies X=A^{-1}B

Method 2: Cramer’s Rule

Let AX=BAX=B, where AA is the coefficient matrix and X=(xi)n×1X=(x_i)_{n\times 1}.

xi=AiAx_i=\frac{\lvert{A_i}\rvert}{\lvert{A}\rvert}

Where AiA_i is the matrix obtained by replacing iith column in matrix AA by BB.

Method 3: Reducing to Echelon Form

Start with (AB)(A|B). Convert the LHS\text{LHS} to echelon form. The solution can be found easily. If a contradiction is encountered while solving the equation, then the system has no solutions.