Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Variation of parameters

Consider the equation, where P,QP,Q are functions of xx alone, and which has 2 fundamental solutions y1,y2y_1,y_2:

y+Py+Qy=f(x)y''+Py'+Qy=f(x)

The general solution of the equation is:

yg=c1y1+c2y2y_g=c_1y_1 + c_2y_2

Now replacing c1,c2c_1,c_2 with u(x),v(x)u(x),v(x) will give yp=uy1+vy2y_p=uy_1 + vy_2, which can be found using the method of variation of parameters.

u=y2fW(x)dx    v=y1fW(x)dxu=-\int{\frac{y_2f}{W(x)}\,\text{d}x} \;\land\; v=\int{\frac{y_1f}{W(x)}\,\text{d}x}

Proof

yp=uy1+vy2y_p=uy_1 + vy_2 yp=uy1+uy1+vy2+vy2y_p'=u'y_1 + uy_1' + v'y_2 + vy_2'

Set uy1+vy2=0    (1)u'y_1+v'y_2=0\;\;(1) to simplify further equations. That implies yp=uy1+vy2y_p'=uy_1'+vy_2'.

yp=uy1+uy1+vy2+vy2y_p''=uy_1''+u'y_1'+vy_2''+v'y_2

Substituting yp,yp,ypy_p'',y_p',y_p to the differential equation:

yp+Pyp+Qyp=uy1+vy2y_p''+Py_p'+Qy_p=u'y_1'+v'y_2'

This implies uy1+vy2=f(x)    (2)u'y_1'+v'y_2'=f(x)\;\;(2).

From equations (1)(1) and (2)(2), where W(x)W(x) is the wronskian of y1,y2y_1,y_2:

u=y2fW(x)    v=y1fW(x)u'=-\frac{y_2f}{W(x)} \;\land\; v'=\frac{y_1f}{W(x)} u=y2fW(x)dx    v=y1fW(x)dxu=-\int{\frac{y_2f}{W(x)}\,\text{d}x} \;\land\; v=\int{\frac{y_1f}{W(x)}\,\text{d}x}

ypy_p can be found now using u,v,y1,y2u,v,y_1,y_2