Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Alternating Series

Suppose uk>0u_k>0. An alternating series is:

k=1n(1)k1uk=u1u2+u3u4+\sum_{k=1}^n (-1)^{k - 1} u_k = u_1 - u_2 + u_3 - u_4 + \cdots

Convergence test

If k  uk>0\forall k\; u_k>0, decreasing and limnun=0\lim_{n\to \infty} u_n = 0, then:

k=1n(1)k1uk is converging\sum_{k=1}^n (-1)^{k - 1} u_k \text{ is converging}