Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Cauchy Sequence

A sequence u:Z+Au:\mathbb{Z}^+ \rightarrow A is Cauchy iff:

ϵ>0NZ+m,n;m,n>N    unum<ϵ\forall \epsilon \gt 0\, \exists N \in \mathbb{Z}^+\, \forall m,n; m,n \gt N \implies \lvert u_n - u_m \rvert \lt \epsilon

Bounded

un  is Cauchy    un  is boundedu_n\;\text{is Cauchy} \implies u_n\;\text{is bounded}

Converse is not true.

Convergence & Cauchy

un  is converging    un  is a Cauchy sequenceu_n\;\text{is converging} \implies u_n\;\text{is a Cauchy sequence}

Converse is true only when the sequence is a subset of a Complete set.

Complete

A set AA is complete iff:

u:Z+A;  u  converges to  LA\forall u:\mathbb{Z}^+ \rightarrow A;\; u\;\text{converges to}\; L \in A

IMPORTANT: R\mathbb{R} is complete. Proof is quite hard.

IMPORTANT: QQ is not complete because:

k=11k!=e1∉Q\sum_{k=1}^\infty \frac{1}{k!} = e - 1 \not\in \mathbb{Q}

IMPORTANT: Z\mathbb{Z} is complete.