Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Continuity Theorems

Extreme Value Theorem

If ff is continuous on [a,b][a,b], ff has a maximum and a minimum in [a,b][a,b].

Intermediate Value Theorem

Let ff is continuous on [a,b][a,b]. If u\exists u such that f(a)>u>f(b)f(a)>u>f(b) or f(a)<u<f(b)f(a)<u<f(b): c(a,b)\exists c \in (a,b) such that f(c)=uf(c)=u.

Sandwich (or Squeeze) Theorem

Let:

  • For some δ>0\delta>0: x(0<xa<δ    f(x)g(x)h(x))\forall x (0<|x-a|<\delta \implies f(x)\le g(x) \le h(x) )
  • limxaf(x)=limxah(x)=LR\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L \in \mathbb{R}

Then limxag(x)=L\lim_{x\to a} g(x) = L.

Works for any kind of x limits.

”No sudden changes”

Positive

Let ff be continuous on aa and f(a)>0f(a)>0

    δ>0;x(xa<δ    f(x)>0)\implies \exists \delta >0; \forall x\,(|x-a|\lt\delta \implies f(x)>0)

Negative

Let ff be continuous on aa and f(a)<0f(a)<0

    δ>0;x(xa<δ    f(x)<0)\implies \exists \delta >0; \forall x\,(|x-a|\lt\delta \implies f(x)<0)