Divergence test
k→∞limuk=0⟹k=1∑nukis diverging
Direct Comparison Test
Let 0<uk<vk.
k=1∑∞vkis converges⟹k=1∑∞ukis converges
Limit Comparison Test
Let 0<uk,vk and limn→∞vnun=R.
R>0⟹(n=1∑∞unis converging⟺n=1∑∞vnis converging)
R=0⟹(n=1∑∞vnis converging⟹n=1∑∞unis converging)
R=∞⟹(n=1∑∞vnis diverging⟹n=1∑∞unis diverging)
Integral Test
Let u(x)>0, decreasing and integrable on [1,M] for all M>1. Then:
n=1∑∞un is converging⟺∫1∞u(x)dx is converging
Ratio Test
Let u(x)>0 and limn→∞unun+1=L.
L<1⟹n=1∑∞unis converging
L>1⟹n=1∑∞unis diverging
Root Test
Let un is a sequence and
limn→∞(∣un∣)1/n=L.
L<1⟹n=1∑∞unis absolutely converging
(L>1∨L=∞)⟹n=1∑∞unis diverging
Dirichlet’s test
Let:
- bn is a decreasing sequence, converging to 0 and
- an is a sequence and
- An=∑k=1nak is bounded
⟹n=1∑∞anbnis converging