Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Convergence Tests

Divergence test

limkuk0    k=1nuk  is diverging\lim_{k \to \infty} u_k \neq 0 \implies \sum_{k=1}^n u_k\; \text{is diverging}

Direct Comparison Test

Let 0<uk<vk0<u_k<v_k.

k=1vk  is converges    k=1uk  is converges\sum_{k=1}^\infty v_k\;\text{is converges} \implies \sum_{k=1}^\infty u_k\;\text{is converges}

Limit Comparison Test

Let 0<uk,vk0<u_k,v_k and limnunvn=R\lim_{n\to \infty}{\frac{u_n}{v_n}} =R.

R>0    (n=1un  is converging    n=1vn  is converging)R \gt 0\implies \bigg(\sum_{n=1}^\infty u_n\;\text{is converging}\iff \sum_{n=1}^\infty v_n\;\text{is converging}\bigg) R=0    (n=1vn  is converging    n=1un  is converging)R = 0\implies \bigg(\sum_{n=1}^\infty v_n\;\text{is converging} \implies \sum_{n=1}^\infty u_n\;\text{is converging}\bigg) R=    (n=1vn  is diverging    n=1un  is diverging)R = \infty\implies\bigg(\sum_{n=1}^\infty v_n\;\text{is diverging} \implies \sum_{n=1}^\infty u_n\;\text{is diverging}\bigg)

Integral Test

Let u(x)>0u(x) \gt 0, decreasing and integrable on [1,M][1,M] for all M>1M \gt 1. Then:

n=1un is converging    1u(x)dx is converging\sum_{n=1}^\infty u_n\text{ is converging} \iff \int_1^\infty {u(x)\,\text{d}x}\text{ is converging}

Ratio Test

Let u(x)>0u(x) \gt 0 and limnun+1un=L\lim_{n\to \infty}{\frac{u_{n+1}}{u_n}} =L.

L<1    n=1un  is converging L \lt 1 \implies \sum_{n=1}^\infty u_n\;\text{is converging} L>1    n=1un  is diverging L \gt 1 \implies \sum_{n=1}^\infty u_n\;\text{is diverging}

Root Test

Let unu_n is a sequence and limn(un)1/n=L\lim_{n\to \infty}{(\rvert u_n\rvert)^{1/n}} =L.

L<1    n=1un  is absolutely converging L \lt 1 \implies \sum_{n=1}^\infty u_n\;\text{is absolutely converging} (L>1L=)    n=1un  is diverging(L \gt 1 \lor L=\infty) \implies \sum_{n=1}^\infty u_n\;\text{is diverging}

Dirichlet’s test

Let:

  • bnb_n is a decreasing sequence, converging to 00 and
  • ana_n is a sequence and
  • An=k=1nakA_n = \sum_{k=1}^n a_k is bounded
    n=1anbn  is converging\implies \sum_{n=1}^\infty a_nb_n\; \text{is converging}