Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Countability

A set AA is countable iff f:AZ+\,\exists f:A\rightarrow Z^{+}, where ff is a one-one function.

Examples

  • Countable: Any finite set, Z,Q\mathbb{Z}, \mathbb{Q}
  • Uncountable: R\mathbb{R}, Any open/closed intervals in R\mathbb{R}.

Transitive property

Say BAB \subset A.

A is countable     B is countableA \text{ is countable }\implies B \text{ is countable}

B is not countable     A is not countableB \text{ is not countable }\implies A \text{ is not countable}