Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Extremums

Suppose f:[a,b]Rf:[a,b]\rightarrow \mathbb{R}, and F=f([a,b])={f(x)    x[a,b]}F=f([a,b])=\Big\{\,f(x)\;|\;x\in [a,b]\,\Big\}. Both minimum and maximum values are called the extremums.

Maximum

Maximum of the function ff is f(c)f(c) where c[a,b]c\in[a,b] iff:

x[a,b],  f(c)f(x)\forall x \in [a,b],\; f(c)\ge f(x)

aka. Global Maximum. Maximum doesn’t exist always.

Local Maximum

A Local maximum of the function ff is f(c)f(c) where c[a,b]c\in[a,b] iff:

δ    x(0<xc<δ    f(c)f(x))\exists \delta\;\;\forall x\,(0<|x-c|<\delta \implies f(c)\ge f(x))

Global maximum is obviously a local maximum.

The above statement can be simplified when c=ac=a or c=bc=b.

When c=ac=a:

δ    x(0<xc<δ    f(c)f(x))\exists \delta\;\;\forall x\,(0<x-c<\delta \implies f(c)\ge f(x))

When c=bc=b:

δ    x(δ<xc<0    f(c)f(x))\exists \delta\;\;\forall x\,(-\delta<x-c<0 \implies f(c)\ge f(x))

Minimum

Minimum of the function ff is f(c)f(c) where c[a,b]c\in[a,b] iff:

x[a,b],  f(c)f(x)\forall x \in [a,b],\; f(c)\le f(x)

aka. Global Minimum. Minimum doesn’t exist always.

Local Minimum

δ    x(0<xc<δ    f(c)f(x))\exists \delta\;\;\forall x\,(0<|x-c|<\delta \implies f(c)\le f(x))

Global minimum is obviously a local maximum.

The above statement can be simplified when c=ac=a or c=bc=b.

When c=ac=a:

δ    x(0<xc<δ    f(c)f(x))\exists \delta\;\;\forall x\,(0<x-c<\delta \implies f(c)\le f(x))

When c=bc=b:

δ    x(δ<xc<0    f(c)f(x))\exists \delta\;\;\forall x\,(-\delta<x-c<0 \implies f(c)\le f(x))

Special cases

f is continuous

Then by Extreme Value Theorem, we know ff has a minimum and maximum in [a,b][a,b].

f is differentiable

  • If f(a)f(a) is a local maximum: f+(a)0f'_{\text{+}}(a)\le 0
  • If f(b)f(b) is a local maximum: f-(b)0f'_{\text{-}}(b)\ge 0
  • c(a,b)c\in(a,b) and If f(c)f(c) is a local maximum: f(c)=0f'(c)= 0
  • If f(a)f(a) is a local minimum: f+(a)0f'_{\text{+}}(a)\ge 0
  • If f(b)f(b) is a local minimum: f-(b)0f'_{\text{-}}(b)\le 0
  • c(a,b)c\in(a,b) and If f(c)f(c) is a local minimum: f(c)=0f'(c)= 0