Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Real Analysis

Mathematical logic

Proposition

A statement in either true or false state.

Symbols

SymbolRead as
\landand
\loror
\rightarrowthen
    \impliesimplies
\Leftarrowimplied by
    \iffif and only if
\forallfor all
\existsthere exists
\simnot

Let’s take aba \to b.

  1. Contrapositive or transposition: ba\sim b \to\,\, \sim a. This is equivalent to the original.
  2. Inverse: ab\sim a \to\,\,\sim b. Does not depend on the original.
  3. Converse: bab \to a. Does not depend on the original.

ababbaa \to b \,\equiv\,\,\sim a \lor b \,\equiv\,\, \sim b \to\,\,\sim a

Required proofs

  • xP(x)xP(x)\sim\forall x \, P(x) \equiv \exists x \sim{P(x)}
  • xP(x)xP(x)\sim\exists x \, P(x) \equiv \forall x \sim{P(x)}
  • xyP(x,y)yxP(x,y)\exists x\, \exists y P(x,y) \equiv \exists y\, \exists x {P(x,y)}
  • xyP(x,y)yxP(x,y)\forall x\, \forall y P(x,y) \equiv \forall y\, \forall x {P(x,y)}
  • xyP(x,y)    yxP(x,y)\exists x\, \forall y P(x,y) \implies \forall y\, \exists x {P(x,y)}
  • (AC)(BC)(AB)C(A \rightarrow C)\land(B \rightarrow C) \equiv (A\lor B)\rightarrow C

Methods of proofs

  1. Just proof what should be proven
  2. Prove the contrapositive
  3. Proof by contradiction
  4. Proof by induction

Proof by contradiction

Suppose a    ba \implies b has to be proven. If aba\,\land \sim b is proven to be false, then, by proof by contradiction, a    ba \implies b can be trivially proven.

Logic behind proof by contradiction

ab=Fa\,\land \sim b = F

(ab)=F\sim{(a\,\land \sim b)} =\,\, \sim F

ab=T\sim a \lor b = T

ab=Ta \to b = T

a    ba \implies b