Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Known Limits

Well-known limits

Existing limits

limx0sinxx=1\lim_{x\to 0} \frac{\sin x}{x} = 1 limxaxnanxa=nan1\lim_{x\to a} \frac{x^n - a^n}{x - a} = na^{n-1} limx(1+ax)bx=eab\lim_{x\to \infty} \bigg(1+\frac{a}{x}\bigg)^{bx} = e^{ab} xR    limnxnn!=0\forall x\in\mathbb{R}\;\; \lim_{n\to\infty}\frac{x^n}{n!}=0

Limits that DNE

limxsinx\lim_{x\to \infty} \sin x limx0sin(1x)\lim_{x\to 0} \sin\bigg(\frac{1}{x}\bigg)

Indeterminate forms

  • 00\frac{0}{0}
  • \frac{\infty}{\infty}
  • 0\infty\cdot0
  • \infty-\infty
  • 0\infty^{0}
  • 000^0
  • 11^\infty