Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Limits

limxaf(x)=L\lim_{x\to{a}}{f(x)}=L iff:

ϵ>0  δ>0  x  (0<xa<δ    f(x)L<ϵ)\forall{\epsilon>0}\; \exists{\delta>0}\; \forall{x}\; (0<|x-a|<\delta\implies{|f(x)-L|<\epsilon})

Defining δ\delta in terms of a given ϵ\epsilon is enough to prove a limit.

Properties

Suppose limf(x)=L,limg(x)=M\lim f(x) = L, \lim g(x) =M.

  • limf±g=L±M\lim {f \pm g} = L \pm M
  • limfg=LM\lim {fg} = LM
  • limfg=LM\lim \frac{f}{g} = \frac{L}{M} (provided g(x)0g(x)\neq 0 and M0M\neq 0)

One sided limits

In x-limit

limxaf(x)=L    (limxaf(x)=Llimxa+f(x)=L)\lim_{x\to{a}}{f(x)}=L \iff \Big( \lim_{x\to{a^-}}{f(x)}=L \land \lim_{x\to{a^+}}{f(x)}=L \Big)

Right limit

limxaf(x)=L\lim_{x\to{a^{-}}}{f(x)}=L iff:

ϵ>0  δ>0  x  (δ<xa<0    f(x)L<ϵ)\forall{\epsilon>0}\; \exists{\delta>0}\; \forall{x}\; (-\delta<x-a<0\implies{|f(x)-L|<\epsilon})

Left limit

limxa+f(x)=L\lim_{x\to{a^{+}}}{f(x)}=L iff:

ϵ>0  δ>0  x  (0<xa<δ    f(x)L<ϵ)\forall{\epsilon>0}\; \exists{\delta>0}\; \forall{x}\; (0<x-a<\delta\implies{|f(x)-L|<\epsilon})

In the answer

limxaf(x)=L    (limxaf(x)=L+limxaf(x)=L)\lim_{x\to{a}}{f(x)}=L \iff \Big( \lim_{x\to{a}}{f(x)}=L^{+} \lor \lim_{x\to{a}}{f(x)}=L^{-} \Big)

Top limit

limxaf(x)=L+\lim_{x\to{a}}{f(x)}=L^{+} iff:

ϵ>0  δ>0  x  (0<xa<δ    0f(x)L<ϵ)\forall{\epsilon>0}\; \exists{\delta>0}\; \forall{x}\; (0<\lvert{x-a}\rvert<\delta\implies{0\le f(x)-L<\epsilon})

Bottom limit

limxaf(x)=L\lim_{x\to{a}}{f(x)}=L^{-} iff:

ϵ>0  δ>0  x  (0<xa<δ    ϵ<f(x)L0)\forall{\epsilon>0}\; \exists{\delta>0}\; \forall{x}\; (0<\lvert{x-a}\rvert<\delta\implies{-\epsilon\lt f(x)-L\le 0})

Limits including infinite

In x-limit

Positive infinity

limxf(x)=L\lim_{x\to{\infty}}{f(x)}=L iff:

ϵ>0  N>0  x  (x>N    f(x)L<ϵ)\forall{\epsilon\gt 0}\; \exists{N>0}\; \forall{x}\; (x\gt N\implies{|f(x)-L|<\epsilon})

Negative infinity

limxf(x)=L\lim_{x\to{-\infty}}{f(x)}=L iff:

ϵ>0  N>0  x  (x<N    f(x)L<ϵ)\forall{\epsilon\gt 0}\; \exists{N>0}\; \forall{x}\; (x\lt-N\implies{|f(x)-L|<\epsilon})

In the answer

Positive infinity

limxaf(x)=\lim_{x\to a}{f(x)}=\infty iff:

M>0  δ>0  x  (0<xa<δ    f(x)>M)\forall{M\gt 0}\; \exists{\delta>0}\; \forall{x}\; (0<\lvert{x-a}\rvert<\delta\implies{f(x)\gt M})

Negative infinity

limxaf(x)=\lim_{x\to a}{f(x)}=-\infty iff:

M>0  δ>0  x  (0<xa<δ    f(x)<M)\forall{M\gt 0}\; \exists{\delta>0}\; \forall{x}\; (0<\lvert{x-a}\rvert<\delta\implies{f(x)\lt-M})