limx→af(x)=L iff:
∀ϵ>0∃δ>0∀x(0<∣x−a∣<δ⟹∣f(x)−L∣<ϵ)
Defining δ in terms of a given ϵ is enough to prove a limit.
Properties
Suppose limf(x)=L,limg(x)=M.
- limf±g=L±M
- limfg=LM
- limgf=ML (provided g(x)=0 and M=0)
One sided limits
In x-limit
x→alimf(x)=L⟺(x→a−limf(x)=L∧x→a+limf(x)=L)
Right limit
limx→a−f(x)=L iff:
∀ϵ>0∃δ>0∀x(−δ<x−a<0⟹∣f(x)−L∣<ϵ)
Left limit
limx→a+f(x)=L iff:
∀ϵ>0∃δ>0∀x(0<x−a<δ⟹∣f(x)−L∣<ϵ)
In the answer
x→alimf(x)=L⟺(x→alimf(x)=L+∨x→alimf(x)=L−)
Top limit
limx→af(x)=L+ iff:
∀ϵ>0∃δ>0∀x(0<∣x−a∣<δ⟹0≤f(x)−L<ϵ)
Bottom limit
limx→af(x)=L− iff:
∀ϵ>0∃δ>0∀x(0<∣x−a∣<δ⟹−ϵ<f(x)−L≤0)
Limits including infinite
In x-limit
Positive infinity
limx→∞f(x)=L iff:
∀ϵ>0∃N>0∀x(x>N⟹∣f(x)−L∣<ϵ)
Negative infinity
limx→−∞f(x)=L iff:
∀ϵ>0∃N>0∀x(x<−N⟹∣f(x)−L∣<ϵ)
In the answer
Positive infinity
limx→af(x)=∞ iff:
∀M>0∃δ>0∀x(0<∣x−a∣<δ⟹f(x)>M)
Negative infinity
limx→af(x)=−∞ iff:
∀M>0∃δ>0∀x(0<∣x−a∣<δ⟹f(x)<−M)