Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Order Axioms

  • Trichotomy: a,bR\forall a,b \in \mathbb{R} exactly one of these holds: a>ba > b, a=ba = b, a<ba<b
  • Transitivity: a,b,cR;a<bb<c    a<c\forall a,b,c \in \mathbb{R}; a<b \land b<c \implies a<c
  • Operation with addition: a,bR;a<b    a+c<b+c\forall a,b \in \mathbb{R}; a<b \implies a+c<b+c
  • Operation with mutliplication: a,b,cR;a<b0<c    ac<bc\forall a,b,c \in \mathbb{R}; a<b \land 0<c \implies ac<bc

Definitions

  • a<bb>aa < b \equiv b > a
  • aba<ba=b a \le b \equiv a<b\lor a=b
  • aba<ba>b a\not =b\equiv a<b\lor a>b
  • x={xif x0,xif x<0\lvert{x}\rvert=\begin{cases}x & \text{if } x \ge 0, \\-x & \text{if } x < 0\end{cases}

Triangular inequalities

aba+ba+b\lvert{a}\rvert - \lvert{b}\rvert \le \lvert{a+b}\rvert \le \lvert{a}\rvert + \lvert{b}\rvert aba+b\Big\lvert{ \lvert{a}\rvert - \lvert{b}\rvert } \Big\rvert \le \lvert{a+b}\rvert

Required proofs

  • a,b,cR;a<bc<0    ac>bc\forall a,b,c \in \mathbb{R}; a<b \land c<0 \implies ac>bc
  • 1>01 > 0
  • aaa-\lvert{a}\rvert\le a\le\lvert{a}\rvert
  • Triangular inequalities

Theorems

  • a  ϵ>0,a<ϵ    a0\exists{a}\;\forall{\epsilon>0},\,a<\epsilon\implies{a}\le{0}
  • a  ϵ>0,0a<ϵ    a=0\exists{a}\;\forall{\epsilon>0},\,0\le{a}<\epsilon\implies{a}={0}
  • ϵ>0  a,a<ϵ\centernot    a0\forall\epsilon>0\;\exists a,a<\epsilon\centernot\implies a\le 0