Let f f f be differentiable on [ a , b ] [a,b] [ a , b ] , f ′ ( a ) ≠ f ′ ( b ) f'(a)\neq f'(b) f ′ ( a ) = f ′ ( b ) and u u u is strictly
between f ′ ( a ) f'(a) f ′ ( a ) and f ′ ( b ) f'(b) f ′ ( b ) :
∃ c ∈ ( a , b ) s.t. f ′ ( c ) = u \exists c \in (a,b)\;\text{s.t.}\,f'(c)=u
∃ c ∈ ( a , b ) s.t. f ′ ( c ) = u
Let f f f be continuous on [ a , b ] [a,b] [ a , b ] and differentiable on ( a , b ) (a,b) ( a , b ) . And f ( a ) = f ( b ) f(a)=f(b) f ( a ) = f ( b ) .
Then:
∃ c ∈ ( a , b ) s.t. f ′ ( c ) = 0 \exists c\in(a,b)\;\text{s.t.}\; f'(c)=0
∃ c ∈ ( a , b ) s.t. f ′ ( c ) = 0
Let f f f be continuous on [ a , b ] [a,b] [ a , b ] and differentiable on ( a , b ) (a,b) ( a , b ) . Then:
∃ c ∈ ( a , b ) s.t. f ′ ( c ) = f ( b ) − f ( a ) b − a \exists c\in(a,b)\;\text{s.t.}\; f'(c)=\cfrac{f(b)-f(a)}{b-a}
∃ c ∈ ( a , b ) s.t. f ′ ( c ) = b − a f ( b ) − f ( a )
Proof Hint
Define g ( x ) = f ( x ) − ( f ( a ) − f ( b ) a − b ) x g(x)=f(x)-\Big(\frac{f(a)-f(b)}{a-b}\Big)x g ( x ) = f ( x ) − ( a − b f ( a ) − f ( b ) ) x
g ( a ) g(a) g ( a ) will be equal to g ( b ) g(b) g ( b )
Use Rolle’s Theorem for g g g
Let f f f and g g g be continuous on [ a , b ] [a,b] [ a , b ] and differentiable on ( a , b ) (a,b) ( a , b ) , and
∀ x ∈ ( a , b ) g ′ ( x ) ≠ 0 \forall x \in (a,b)\;g'(x) \neq 0 ∀ x ∈ ( a , b ) g ′ ( x ) = 0 Then:
∃ c ∈ ( a , b ) s.t. f ′ ( c ) g ′ ( c ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \exists c\in(a,b)\;\text{s.t.}\; \frac{f'(c)}{g'(c)}=\cfrac{f(b)-f(a)}{g(b)-g(a)}
∃ c ∈ ( a , b ) s.t. g ′ ( c ) f ′ ( c ) = g ( b ) − g ( a ) f ( b ) − f ( a )
Proof Hint
Define h ( x ) = f ( x ) − ( f ( a ) − f ( b ) g ( a ) − g ( b ) ) g ( x ) h(x)=f(x)-\Big(\frac{f(a)-f(b)}{g(a)-g(b)}\Big)g(x) h ( x ) = f ( x ) − ( g ( a ) − g ( b ) f ( a ) − f ( b ) ) g ( x )
h ( a ) h(a) h ( a ) will be equal to h ( b ) h(b) h ( b )
Use Rolle’s Theorem for h h h
Mean value theorem can be obtained from this when g ( x ) = x g(x)=x g ( x ) = x .
L’Hopital’s Rule can be used when all of these conditions are met. (here
δ \delta δ is some positive number). Select the appropriate x x x range (as in the
limit definition), say I I I .
Either of these conditions must be satisfied
f ( a ) = g ( a ) = 0 f(a)=g(a)=0 f ( a ) = g ( a ) = 0
lim f ( x ) = lim g ( x ) = 0 \lim{f(x)}=\lim{g(x)}=0 lim f ( x ) = lim g ( x ) = 0
lim f ( x ) = lim g ( x ) = ∞ \lim{f(x)}=\lim{g(x)}=\infty lim f ( x ) = lim g ( x ) = ∞
f , g f,g f , g are continuous on x ∈ I x\in I x ∈ I (closed interval)
f , g f,g f , g are differentiable on x ∈ I x\in I x ∈ I (open interval)
g ′ ( x ) ≠ 0 g'(x) \neq 0 g ′ ( x ) = 0 on x ∈ I x\in I x ∈ I (open interval)
lim x → a + f ′ ( x ) g ′ ( x ) = L \lim\limits_{x\to a^{\text{+}}}{\frac{f'(x)}{g'(x)}}=L x → a + lim g ′ ( x ) f ′ ( x ) = L
Then: lim x → a + f ( x ) g ( x ) = L \lim\limits_{x\to a^{\text{+}}}{\frac{f(x)}{g(x)}}=L x → a + lim g ( x ) f ( x ) = L
Here, L L L can be either a real number or ± ∞ \pm \infty ± ∞ . And it is valid for all
types of “x limits”.