Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Relations

Definitions

  • Cartesian Product of sets A,BA,B A×B={(a,b)aA,bB}A\times{B}=\set{(a,b)|a\in{A},b\in{B}}

  • Ordered pair (a,b)={{a},{a,b}}(a,b)=\Big\{\set{a},\set{a,b}\Big\}

Relation

Let A,BA,B\not=\emptyset. A relation R:ABR:A\rightarrow{B} is a non-empty subset of A×BA\times{B}.

  • aRb(a,b)Ra\,R\,b \equiv (a,b)\in{R}
  • Domain of RR: dom(R)=Adom(R)=A
  • Codomain of RR: codom(R)=Bcodom(R)=B
  • Range of RR: ran(R)={y(x,y)R}ran(R)=\set{y|(x,y)\in{R}}
  • ran(R)Bran(R)\subseteq{B}
  • Pre-range of RR: preran(R)={x(x,y)R}preran(R)=\set{x\,|\,(x,y)\in{R}}
  • preran(R)Apreran(R)\subseteq{A}
  • R(a)={b(a,b)R}R(a) = \set{b\,|\,(a,b)\in{R}}

Everywhere defined

RR is everywhere defined     A=dom(R)=preran(R)\iff{A=dom(R)=preran(R)}     aA,  bB;(a,b)R\iff{\forall{a\in{A}},\;\exists{b\in{B}};\,(a,b)\in{R}}.

Onto

RR is onto     B=codom(R)=ran(R)\iff{B=codom(R)=ran(R)}     bBaA(a,b)R\iff{\forall{b\in{B}}\,\exists{a\in{A}}\,(a,b)\in{R}}

Aka. surjection.

Inverse

Inverse of a relation RR:

R1={(b,a)(a,b)R}R^{-1}=\set{(b,a)\,|\,(a,b)\in{R}}

Types of relation

one-many

    aA,b1,b2B  ((a,b1),(a,b2)Rb1b2)\iff\exists{a\in{A}},\,\exists{b_1,b_2\in{B}}\;((a,b_1),(a,b_2)\in{R}\,\land\,b_1\not=b_2)

Not one-many

    aA,b1,b2B  ((a,b1),(a,b2)R    b1=b2)\iff\forall{a\in{A}},\,\forall{b_1,b_2\in{B}}\;((a,b_1),(a,b_2)\in{R}\implies b_1=b_2)

many-one

    a1,a2A,bB  ((a1,b),(a2,b)Ra1a2)\iff\exists{a_1,a_2\in{A}},\,\exists{b\in{B}}\;((a_1,b),(a_2,b)\in{R}\,\land\,a_1\not=a_2)

Not many-one

    a1,a2A,bB  ((a1,b),(a2,b)R    a1=a2)\iff\forall{a_1,a_2\in{A}},\,\forall{b\in{B}}\;((a_1,b),(a_2,b)\in{R}\implies a_1=a_2)

many-many

iff RR is one-many and many-one.

one-one

iff RR is not one-many and not many-one. Aka. injection.

Bijection

When a relation is onto and one-one.