Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Taylor Series

Let ff be infinitely many times differentiable on (a,b)(a,b) and c,x(a,b)c,x \in (a,b).

If limnRn(x)=0\lim_{n\to \infty} R_n(x) = 0 for x(cR,c+R)(a,b)x \in (c-R, c+R) \subset (a,b), then Taylor series of ff at cc is given by:

n=0f(n)(c)n!(xc)n\sum_{n=0}^\infty \frac{f^{(n)}(c)}{n!} (x-c)^n

Procedure

Suppose a function ff is given and its Taylor series is required.

  • Differentiate ff repeatedly and find a general solution for nn-th derivative
  • Construct Taylor polynomial
  • Use root test or ratio test to find the range of convergence of the Taylor polynomial
  • Consider the endpoints of range of convergence to check if the Taylor polynomial converges
  • Construct the Taylor remainder
  • Find for which values of xx, the remainder converges to 00

Examples

e^x

Range of convergence is R\mathbb{R}.

ex=n=0xnn!=1+x1!+x22!+x33!+e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots

ln (1+x)

Range of convergence is (1,1](-1,1].

ln(1+x)=n=1(1)n1xnn=xx22+x33x44+\ln(1+x) = \sum_{n=1}^\infty \frac{(-1)^{n-1}x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots

sin x

Range of convergence is R\mathbb{R}.

sinx=n=0(1)nx2n+1(2n+1)!=xx33!+x55!x77!+\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots

cos x

Range of convergence is R\mathbb{R}.

cosx=n=0(1)nx2n(2n)!=1x22!+x44!x66!+\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots