Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Uniformly Cauchy

un(x)u_n(x) in xAx\in A is said to be uniformly Cauchy iff:

ϵ>0NZ+m,n>NxA;un(x)um(x)<ϵ\forall \epsilon \gt 0 \exists N \in \mathbb{Z}^+ \forall m,n \gt N \forall x \in A; \lvert u_n(x)-u_m(x) \rvert \lt \epsilon

If un(x)u_n(x) is a sequence of real-valued functions, then:

un(x) converges uniformly    un(x) is uniformly Cauchyu_n(x)\text{ converges uniformly} \iff u_n(x)\text{ is uniformly Cauchy}