Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Beta function

Beta function is defined as below, for m,n>0m,n\gt 0:

B(m,n)=01xm1(1x)n1dxB(m,n)=\int_0^1 x^{m-1}(1-x)^{n-1}\,\text{d}x

Aka. Eulerian integral of the first kind.

Properties

Symmetrical

From the definition:

B(m,n)=B(n,m)B(m,n) = B(n,m)

Relation with gamma function

m,n>0\forall m,n \gt 0.

B(m,n)=Γ(m)Γ(n)Γ(m+n)B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}

Transformations

This section is intended to be exam-focused. Proofs for the transformations are included in a separate section.

Form 0, 6

ab(xa)m1(bx)n1dx=(ba)m+n1B(m,n)\int_a^b {(x-a)^{m-1}(b-x)^{n-1}}\,\text{d}x = (b-a)^{m+n-1} B(m,n)

Form 0 (definition) is derived by setting a=0a=0 and b=1b=1, .

Form 1, 3

0xm1(ax+b)m+ndx=B(m,n)ambn\int_0^\infty \frac{x^{m-1}}{(ax + b)^{m+n}}\,\text{d}x = \frac{B(m,n)}{a^m b^n}

Form 1 is derived by setting a=b=1a=b=1.

Form 2

B(m,n)=01xm1+xn1(1+x)m+ndxB(m,n) = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}}\,\text{d}x

Form 4

0π2sin2m1(x)cos2n1(x)(asin2x+bcos2x)m+ndx=B(m,n)2ambn\int_0^\frac{\pi}{2} \frac{\sin^{2m-1}(x) \cos^{2n-1}(x)}{(a\sin^2 x + b\cos^2 x)^{m+n}}\,\text{d}x = \frac{B(m,n)}{2a^m b^n}

Form 5, 7

01xm1(1x)n1(a+bx)m+ndx=B(m,n)an(a+b)m\int_0^1 \frac{x^{m-1}(1-x)^{n-1}}{(a + bx)^{m+n}}\,\text{d}x = \frac{B(m,n)}{a^n(a+b)^m}

Form 5 is derived by setting b=1b=1.

Transformations Proofs

Form 1

B(m,n)=0xn1(x+1)m+ndx=0xm1(x+1)m+ndxB(m,n)= \int_0^{\infty} \frac{x^{n-1}}{(x+1)^{m+n}}\,\text{d}x= \int_0^{\infty} \frac{x^{m-1}}{(x+1)^{m+n}}\,\text{d}x

Form 2

B(m,n)=01xm1+xn1(1+x)m+ndxB(m,n) = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}}\,\text{d}x

Form 3

0xm1(ax+b)m+ndx=B(m,n)ambn\int_0^\infty \frac{x^{m-1}}{(ax + b)^{m+n}}\,\text{d}x = \frac{B(m,n)}{a^m b^n}

Form 4

0π2sin2m1(x)cos2n1(x)(asin2x+bcos2x)m+ndx=B(m,n)2ambn\int_0^\frac{\pi}{2} \frac{\sin^{2m-1}(x) \cos^{2n-1}(x)}{(a\sin^2 x + b\cos^2 x)^{m+n}}\,\text{d}x = \frac{B(m,n)}{2a^m b^n}

Form 5

01xm1(1x)n1(x+a)m+ndx=B(m,n)an(1+a)m\int_0^1 \frac{x^{m-1} (1-x)^{n-1}}{(x+a)^{m+n}}\,\text{d}x = \frac{B(m,n)}{a^n (1+a)^m}

Form 6

ab(xa)m1(bx)n1dx=(ba)m+n1B(m,n)\int_a^b {(x-a)^{m-1}(b-x)^{n-1}}\,\text{d}x = (b-a)^{m+n-1} B(m,n)

Form 7

01xm1(1x)n1(a+(ba)x)m+ndx=B(m,n)anbm\int_0^1 \frac{x^{m-1}(1-x)^{n-1}}{(a + (b-a)x)^{m+n}}\,\text{d}x = \frac{B(m,n)}{a^nb^m} 01xm1(1x)n1(a+bx)m+ndx=B(m,n)an(a+b)m\int_0^1 \frac{x^{m-1}(1-x)^{n-1}}{(a + bx)^{m+n}}\,\text{d}x = \frac{B(m,n)}{a^n(a+b)^m}