Beta function is defined as below, for m,n>0:
B(m,n)=∫01xm−1(1−x)n−1dx
Aka. Eulerian integral of the first kind.
Properties
Symmetrical
From the definition:
B(m,n)=B(n,m)
Relation with gamma function
∀m,n>0.
B(m,n)=Γ(m+n)Γ(m)Γ(n)
This section is intended to be exam-focused.
Proofs for the transformations are included in a
separate section.
∫ab(x−a)m−1(b−x)n−1dx=(b−a)m+n−1B(m,n)
Form 0 (definition) is derived by setting a=0 and b=1, .
∫0∞(ax+b)m+nxm−1dx=ambnB(m,n)
Form 1 is derived by setting a=b=1.
B(m,n)=∫01(1+x)m+nxm−1+xn−1dx
∫02π(asin2x+bcos2x)m+nsin2m−1(x)cos2n−1(x)dx=2ambnB(m,n)
∫01(a+bx)m+nxm−1(1−x)n−1dx=an(a+b)mB(m,n)
Form 5 is derived by setting b=1.
B(m,n)=∫0∞(x+1)m+nxn−1dx=∫0∞(x+1)m+nxm−1dx
B(m,n)=∫01(1+x)m+nxm−1+xn−1dx
∫0∞(ax+b)m+nxm−1dx=ambnB(m,n)
∫02π(asin2x+bcos2x)m+nsin2m−1(x)cos2n−1(x)dx=2ambnB(m,n)
∫01(x+a)m+nxm−1(1−x)n−1dx=an(1+a)mB(m,n)
∫ab(x−a)m−1(b−x)n−1dx=(b−a)m+n−1B(m,n)
∫01(a+(b−a)x)m+nxm−1(1−x)n−1dx=anbmB(m,n)
∫01(a+bx)m+nxm−1(1−x)n−1dx=an(a+b)mB(m,n)