Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Converging Functions

Convergence of functions is introduced in Sequence of Functions | Real Analysis.

Uniform Convergence Theorem

Let fnf_n be a sequence of Riemann integrable functions on [a,b][a,b]. Suppose fnf_n converges to ff uniformly. Then ff is Riemann integrable on [a,b][a,b] and x[a,b]\forall x \in [a,b]:

axfn(x)dx converges to axf(x)dx uniformly \int_a^x f_n(x)\,\text{d}x \text{ converges to } \int_a^x f(x)\,\text{d}x \text{ uniformly }

and:

limnabfn(x)dx=ablimnfn(x)dx=abf(x)dx\lim_{n\to \infty} \int_a^b f_n(x)\,\text{d}x = \int_a^b \lim_{n\to \infty} f_n(x)\,\text{d}x = \int_a^b f(x)\,\text{d}x

When fnf_n converges to ff pointwise, it is not certain whether ff is Riemann integrable or not. An example where ff is not Riemann integrable:

limnun={  1x=qk  where  kn  0otherwise\lim_{n\to\infty}u_n= \begin{cases} \;1 & x=q_k\;\text{where}\; k \le n\\ \;0 & \text{otherwise}\\ \end{cases}

Here qkq_k is the enumeration of rational numbers in [0,1][0,1].

Dominated Convergence Theorem

Let fnf_n be a sequence of Riemann integrable functions on [a,b][a,b]. Suppose fnf_n converges to ff pointwise where ff is Riemann integrable on [a,b][a,b]. If M>0  n  x[a,b]  s.t.  fn(x)M\exists M>0\;\forall n\; \forall x \in [a,b]\;\text{s.t.}\; \lvert f_n(x) \rvert \le M :

limnabfn(x)dx=abf(x)dx\lim_{n\to \infty} \int_a^b f_n(x)\,\text{d}x = \int_a^b f(x)\,\text{d}x

Monotone Convergence Theorem

Let fnf_n be a sequence of Riemann integrable functions on [a,b][a,b], and they are monotone (all increasing or decreasing, like f1f2fnf_1 \le f_2 \cdots \le f_n). Suppose fnf_n converges to ff pointwise where ff is Riemann integrable on [a,b][a,b]. If M>0  n  x[a,b]  s.t.  fn(x)M\exists M>0\;\forall n\; \forall x \in [a,b]\;\text{s.t.}\; \lvert f_n(x) \rvert \le M :

limnabfn(x)dx=abf(x)dx\lim_{n\to \infty} \int_a^b f_n(x)\,\text{d}x = \int_a^b f(x)\,\text{d}x

Can be proven from the dominated convergence theorem.