Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Gamma function

Defined as below for n>0n\gt 0:

Γ(n)=0exxn1dx\Gamma(n)=\int_0^\infty e^{-x}x^{n-1}\,\text{d}x

Aka. Eulerian integral of the second kind.

Convergence

Γ(n)\Gamma(n) is convergent iff n>0n \gt 0.

Properties

Proofs are required for each property mentioned below.

  • Γ(1)=1\Gamma(1)=1
  • Γ(n+1)=nΓ(n)\Gamma(n+1)=n\Gamma(n)
  • Γ(n+1)=n!\Gamma(n+1)=n!
  • Γ(n)Γ(1n)=πcsc(πx)\Gamma(n) \Gamma(1-n) = \pi \csc(\pi x)
  • Γ(n2)\Gamma(\frac{n}{2}) can be extrapolated from Γ(12)=π\Gamma(\frac{1}{2})=\sqrt{\pi} (see below for explanation)
  • Γ(k)\Gamma(k), where kk is a rational number (other than integers and half of any integer), cannot be expressed in a closed form value.

Extension of gamma function

Γ(n)\Gamma(n) function can be extended for negative non-integers using:

Γ(n)=Γ(n+1)n\Gamma(n) = \frac{\Gamma(n+1)}{n}

This cannot be used to define Γ(0)\Gamma(0) because of the denominator. And through induction, Γ\Gamma function cannot be defined for negative integers.

Lemmas

Lemma 1

s>0  0esxdx  converges\forall s \gt 0 \; \int_0^\infty e^{-sx}\,\text{d}x\;\text{converges}

Lemma 2

nZ+  limxxn1ex/2=0\forall n \in\mathbb{Z}^+ \; \lim_{x\to\infty} \frac{x^{n-1}}{e^{x/2}} =0

Transformations

Alternate forms of Γ(n)\Gamma(n). This section is intended to be exam-focused. Proofs for the transformations are included in a separate section.

Form 0, 1, 4

For kRk\in \mathbb{R}:

Γ(n)=k0exkxkn1dx\Gamma(n) = k \int_0^\infty e^{-x^k} x^{kn-1}\,\text{d}x

Form 0 (definition) is resulted when setting k=1k=1. Form 1 is resulted when setting k=1nk=\frac{1}{n}.

Form 2

0ekxxn1dx=Γ(n)kn\int_0^\infty e^{-kx}x^{n-1}\,\text{d}x = \frac{\Gamma(n)}{k^n}

Form 3

Γ(n)=01(ln1x)n1dx\Gamma(n)= \int_0^1 \bigg(\ln\frac{1}{x}\bigg)^{n-1} \,\text{d}x

Transformations Proofs

Form 1

n>0\forall n \gt 0:

Γ(n)=1n0ex1/ndx\Gamma(n)=\frac{1}{n}\int_0^\infty e^{-x^{1/n}}\,\text{d}x

Form 2

0ekxxn1dx=Γ(n)kn\int_0^\infty e^{-kx}x^{n-1}\,\text{d}x = \frac{\Gamma(n)}{k^n}

Form 3

Γ(n)=01(ln1x)n1dx\Gamma(n)= \int_0^1 \bigg(\ln\frac{1}{x}\bigg)^{n-1} \,\text{d}x

Form 4

For kRk\in \mathbb{R}:

Γ(n)=k0exkxkn1dx\Gamma(n) = k \int_0^\infty e^{-x^k} x^{kn-1}\,\text{d}x