Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Properties of Integrals

Suppose ff and gg are integrable on [a,b][a,b].

Flipping the range

abf=baf\int_a^bf=-\int_b^af

Addition

f+gf+g will be integrable on [a,b][a,b].

ab(f±g)=abf±abg\int_a^b(f\pm g)= \int_a^bf \pm \int_a^bg

Converse is not true.

Constant multiplication

Suppose kRk\in\mathbb{R}. kfkf will be integrable [a,b][a,b].

abkf=kabf\int_a^bkf=k\int_a^bf

Converse is not true.

Bounds

If mf(x)Mm\le f(x) \le M on [a,b][a,b]:

m(ba)abfM(ba)m(b-a) \le \int_a^bf \le M(b-a)

If f(x)g(x)f(x)\le g(x) on [a,b][a,b]:

abfabg\int_a^bf \le \int_a^bg

Modulus

f|f| will be integrable on [a,b][a,b].

abfabf\Bigg|\int_a^bf\Bigg| \le \int_a^b|f|

Multiple

fgfg will be integrable on [a,b][a,b]. Converse is not true.

Max, Min

max(f,g)\max(f,g) and min(f,g)\min(f,g) are integrable.

Where max\max and min\min functions are defined as:

max(f,g)=12(fg+f+g)\max(f,g)=\frac{1}{2}(|f-g|+f+g)

min(f,g)=12(fg+f+g)\min(f,g)=\frac{1}{2}(-|f-g|+f+g)

Additivity

    f\iff f is Riemann integrable on [a,c] and [c,b][a,c]\text{ and } [c,b] where c(a,b)c \in (a,b).

After the integrability is proven,

abf=acf+cbf\int_a^b f = \int_a^c f + \int_c^b f