Suppose f and g are integrable on [a,b].
Flipping the range
∫abf=−∫baf
Addition
f+g will be integrable on [a,b].
∫ab(f±g)=∫abf±∫abg
Converse is not true.
Constant multiplication
Suppose k∈R. kf will be integrable [a,b].
∫abkf=k∫abf
Converse is not true.
Bounds
If m≤f(x)≤M on [a,b]:
m(b−a)≤∫abf≤M(b−a)
If f(x)≤g(x) on [a,b]:
∫abf≤∫abg
Modulus
∣f∣ will be integrable on [a,b].
∫abf≤∫ab∣f∣
Multiple
fg will be integrable on [a,b]. Converse is not true.
Max, Min
max(f,g) and min(f,g) are integrable.
Where max and min functions are defined as:
max(f,g)=21(∣f−g∣+f+g)
min(f,g)=21(−∣f−g∣+f+g)
Additivity
⟺f is Riemann integrable on [a,c] and [c,b] where c∈(a,b).
After the integrability is proven,
∫abf=∫acf+∫cbf