Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Riemann Sum

Let

  • f:[a,b]Rf\,:\,[a,b]\rightarrow\mathbb{R} is a bounded function on the compact interval I=[a,b]I=[a,b] with M=supIfM=\sup_I f and m=infIfm=\inf_I f.
  • P={I1,I2,,In}P=\set{I_1, I_2, \dots, I_n}
  • Mk=supIkf=sup{f(x):x[xk1,xk]}M_k=\sup_{I_k} f = \sup\set{f(x):x\in[x_{k-1},x_k]}
  • mk=infIkf=inf{f(x):x[xk1,xk]}m_k=\inf_{I_k} f = \inf\set{f(x):x\in[x_{k-1},x_k]}

Upper riemann sum

U(f;P)=k=1nMkIkU(f;P)=\sum_{k=1}^{n}{M_k\lvert{I_k}\rvert}

Lower riemann sum

L(f;P)=k=1nmkIkL(f;P)=\sum_{k=1}^{n}{m_k\lvert{I_k}\rvert}

mk<Mk    L(f;P)U(f;P)m_k<M_k \implies L(f;P)\,\le\,U(f;P)

When P1,P2P_1, P_2 are any 2 partitions of II: L(f;P1)U(f;P2)L(f;P_1) \le U(f;P_2)