Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Sequential Characterization of Integrability

A bounded function f:[a,b]Rf:[a,b]\to \mathbb{R} is Riemann integrable iff {Pn}\exists \set{P_n} a sequence of partitions, such that:

limn[U(f;Pn)L(f;Pn)]=0\lim_{n\to\infty}{ \Big[ U(f;P_n)- L(f;P_n) \Big] } =0

In that case:

abf=limnU(f;Pn)=limnL(f;Pn)\int_a^b f = \lim_{n\to\infty} U(f;P_n) = \lim_{n\to\infty} L(f;P_n)

Theorem

Suppose ff is Riemann integrable on [a,b][a,b].

ϵ>0  δ>0  P  (P<δ    abfj=1nf(ζj)Ij<ϵ)\forall \epsilon \gt 0\; \exists \delta \gt 0\; \forall P\; \bigg( \lvert P \rvert \lt \delta \implies \Bigg\lvert \int_a^b f - \sum_{j=1}^n f(\zeta_j)I_j \Bigg\rvert \lt \epsilon \bigg)

where ζj[xj1,xj],j=1,2,,n\zeta_j \in [x_{j-1},x_j], j=1,2,\cdots,n.