A bounded function f:[a,b]→R is Riemann integrable iff
∃{Pn} a sequence of partitions, such that:
n→∞lim[U(f;Pn)−L(f;Pn)]=0
In that case:
∫abf=n→∞limU(f;Pn)=n→∞limL(f;Pn)
Theorem
Suppose f is Riemann integrable on [a,b].
∀ϵ>0∃δ>0∀P(∣P∣<δ⟹∫abf−j=1∑nf(ζj)Ij<ϵ)
where ζj∈[xj−1,xj],j=1,2,⋯,n.