Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Upper & Lower integral

Let P\mathbb{P} be the set of all possible partitions of the interval [a,b][a, b].

Upper Integral

U(f)=inf{U(f;P);PP}=abfU(f)=\inf{\set{U(f;P);P\in\mathbb{P}}}=\overline{\int_{a}^{b}{f}}

Lower Integral

L(f)=sup{L(f;P);PP}=abfL(f)=\sup{\set{L(f;P);P\in\mathbb{P}}}=\underline{\int_{a}^{b}{f}}

For a bounded function ff, always L(f)U(f)L(f)\le U(f)