Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Vectors

Revise Vectors unit from G.C.E (A/L) Combined Mathematics.

Direction Cosines

Suppose p=ai+bj+ck\vec{p} = a\underline{i}+b\underline{j}+c\underline{k}. Direction cosines of pp are cosα,cosβ,cosγ\cos{\alpha}, \cos{\beta},\cos{\gamma} where α,β,γ\alpha,\beta,\gamma are the angles pp makes with x,y,zx,y,z axes.

Unit vector in the direction of p=icosα+jcosβ+kcosγ\vec{p}=\underline{i}\cos{\alpha}+\underline{j}\cos{\beta}+\underline{k}\cos{\gamma}. Because of this:

cos2α+cos2β+cos2γ=1\cos^2{\alpha}+\cos^2{\beta}+\cos^2{\gamma}=1

Direction Ratio

Ratio of the direction cosines is called as direction ratio.

cosα:cosβ:cosγ\cos{\alpha}\,:\,\cos{\beta}\,:\,\cos{\gamma}

Cross Product

a×b=absin(θ)n=ijkaxayazbxbybza \times b = \lvert a \rvert \lvert b \rvert sin{(\theta)} n = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}

nn is the unit normal vector to aa and bb. Direction is based on the right hand rule.

a×b=0    a=0b=0aba \times b = 0 \implies \lvert a \rvert = 0 \lor \lvert b \rvert = 0 \lor a \parallel b

Cross products between ii, jj, kk are circular.

Cross products of i,j,k

Properties

  • a×a=0a \times a = 0
  • (a×b)=(b×a)(a\times b) = -(b \times a)
  • a×(b+c)=(a×b)+(a×c)a \times (b + c) = (a \times b) + (a \times c)
  • Area of a parallelogram ABCD=AB×ADABCD = \lvert \vec{AB} \times \vec{AD} \rvert

Scalar Triple Product

[a,b,c]=a(b×c)=axayazbxbybzcxcycz[a,b,c] = a \cdot (b \times c) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}

Properties

  • [a,b,c]=a(b×c)=(a×b)c[a,b,c] = a \cdot (b \times c) = (a \times b) \cdot c
  • [a,b,c]=[b,c,a]=[c,a,b]=[a,c,b][a,b,c] = [b,c,a] = [c,a,b] = -[a,c,b]
  • Swapping any 2 vectors will negate the product.
  • [a,b,c]=0[a,b,c] = 0 iff aa, bb, cc are coplanar.
  • Volume of a parallelepiped with aa, bb, cc as adjacent edges = [a,b,c][a,b,c]
  • Volume of a tetrahedron with aa, bb, cc as adjacent edges = 16[a,b,c]\frac{1}{6}[a,b,c]

Vector Triple Product

a×(b×c)=(ac)b(ab)ca \times (b \times c) = (a \cdot c)b - (a \cdot b)c

Resulting vector lies in the plane that contains bb and cc.