Skip to content
Sahithyan's S1
Sahithyan's S1 — Mechanics

Dynamics

A branch of mechanics, which deals with motion of bodies.

2 parts:

  • Kinematics: the study of geometric aspects of motion (not referencing the forces)
  • Kinetics: the analysis of the forces that cause the motion

Kinematics of a particle

A particle has a mass and negligible size.

Rectilinear motion

When the motion of a particle is along a straight line.

Suppose xx is the distance to the particle from a fixed point on its motion path.

  • x˙\dot{x} is its instantaneous velocity.
  • x¨\ddot{x} is its instantaneous acceleration.

Curvilinear motion

When the motion of a particle is along a curve.

Suppose r\overline{r} is the position vector of the particle.

  • Instantaneous velocity v=drdtv=\frac{\text{d}r}{\text{d}t}
  • Instantaneous speed v=dsdt|v|=\frac{\text{d}s}{\text{d}t}
  • Instantaneous acceleration a=dvdta=\frac{\text{d}v}{\text{d}t}

2D motion of a particle

Rectangular form

Motion (rectangular form)

vy=dydt=y˙        vx=dxdt=x˙v_y = \frac{\text{d}y}{\text{d}t}=\dot{y} \;\; \land \;\; v_x = \frac{\text{d}x}{\text{d}t}=\dot{x} ay=d2ydt2=y¨        ax=d2xdt2=x¨a_y = \frac{\text{d}^2y}{\text{d}t^2}=\ddot{y} \;\; \land \;\; a_x = \frac{\text{d}^2x}{\text{d}t^2}=\ddot{x}

Polar form

Motion (polar form)

Velocity have a transverse and radial components.

  • Transverse component vθ=θ˙×rv_\theta=\underline{\dot{\theta}}\times \underline{r}
  • Radial component vr=r˙v_r=\underline{\dot{r}}

Curvilinear motion has polar acceleration

Acceleration also have a transverse and radial components.

  • Transverse component
    • aθ=rθ¨+2θ˙r˙a_\theta=r\ddot{\theta}+2\dot{\theta}\dot{r}
    • In vector equation: aθ=θ¨×r+2(θ˙×r˙)\underline{a_\theta} = \underline{\ddot{\theta}}\times \underline{r}+2(\underline{\dot{\theta}}\times \underline{\dot{r}})
  • Radial component
    • ar=r¨rθ˙2a_r=\ddot{r}-r\dot{\theta}^2
    • ar=r¨+θ˙×(θ˙×r)\underline{a_r} = \underline{\ddot{r}}+ \underline{\dot{\theta}}\times(\underline{\dot{\theta}}\times \underline{r})

In the acceleration:

  • Coriolis’ component of acceleration: 2θ˙r˙2\dot{\theta}\dot{r}
  • Centripetal component of acceleration: rθ˙2=θ˙×(θ˙×r)-r\dot{\theta}^2 = \underline{\dot{\theta}}\times(\underline{\dot{\theta}}\times\underline{r})

Effects of Coriolis’ component

  • Objects reflect to the right in the northern hemisphere
  • Objects reflect to the left in the southern hemisphere
  • Maximum deflections occur at the poles. No deflection at the equator.

Unit vectors

Unit vectors in transverse and radial directions are denoted by eθe_\theta and ere_r respectively.

e˙r=θ˙eθ        e˙θ=θ˙er\dot{e}_r=\dot{\theta}e_\theta\;\;\land\;\; \dot{e}_\theta = -\dot{\theta}e_r

Velocity

v=ddt(rer)=r˙er+re˙r=r˙er+rθ˙eθv= \frac{\text{d}}{\text{d}t}(re_r) = \dot{r}e_r + r\dot{e}_r = \dot{r}e_r+ r\dot{\theta}e_\theta

Acceleration

a=ddt(rθ˙eθ)=(r¨rθ˙2)er+(rθ¨+2θ˙r˙)eθa= \frac{\text{d}}{\text{d}t} (r\dot{\theta}e_\theta)= (\ddot{r}-r\dot{\theta}^2)e_r+ (r\ddot{\theta}+2\dot{\theta}\dot{r})e_\theta