A series of the form:
∑ n = 0 ∞ a n ( x − c ) n \sum_{n=0}^\infty
a_n (x-c)^n
n = 0 ∑ ∞ a n ( x − c ) n
Here:
x x x - a variable
c c c - a constant
Convergence of a power series can be checked using
ratio test or
root test .
Maximum radius of x x x in where the series converges.
R = sup { r ∣ series converges for ∣ x − c ∣ < r } R = \sup{\big\{r\;|\; \text{series converges for}\; \lvert x-c \rvert < r\big\}}
R = sup { r ∣ series converges for ∣ x − c ∣ < r }
The below equation can be used to find R R R :
lim k → ∞ ∣ a k ∣ 1 k = 1 R \lim_{k\to \infty} |a_k|^{\frac{1}{k}} = \frac{1}{R}
k → ∞ lim ∣ a k ∣ k 1 = R 1
The series may converge or diverge for ∣ x − c ∣ = R \lvert x - c \rvert = R ∣ x − c ∣ = R .
( c − R , c + R ) (c-R,c+R) ( c − R , c + R ) is the range of convergence. Aka. interval of convergence. The
series may converge or diverge at the endpoints. Endpoints must be checked
separately to find out if they must be included in the range of convergence.
The series is:
Absolutely converging for ∣ x − a ∣ < R \lvert x-a \rvert \lt R ∣ x − a ∣ < R
Diverging for ∣ x − a ∣ < R \lvert x-a \rvert \lt R ∣ x − a ∣ < R
Uniformly converging for ∣ x − a ∣ ≤ ρ < R \lvert x-a \rvert \le \rho \lt R ∣ x − a ∣ ≤ ρ < R
Suppose R ∈ ( 0 , ∞ ) R \in (0,\infty) R ∈ ( 0 , ∞ ) and 0 < p < R 0 \lt p \lt R 0 < p < R . Then ∀ x ∀ n \forall x \forall n ∀ x ∀ n
(∣ x − a ∣ ≤ p ⟹ s n ( x ) ) \lvert x-a \rvert \le p \implies s_n(x)) ∣ x − a ∣ ≤ p ⟹ s n ( x )) is uniformly (and absolutely)
converging.
Proof Hint
Note the relation between R R R and a k a_k a k
Prove ( p + R 2 p R ) k (\frac{p+R}{2pR})^k ( 2 pR p + R ) k is an upperbound to ∣ a k ∣ 1 k |a_k|^{\frac{1}{k}} ∣ a k ∣ k 1 , using
it’s infinity limit
Define M k = ( p + R 2 R ) k = r k M_k = (\frac{p+R}{2R})^k = r^k M k = ( 2 R p + R ) k = r k
Prove M k M_k M k is a bound to u k u_k u k
Prove ∑ k = 1 n r k \sum_{k=1}^{n} r^k ∑ k = 1 n r k is converging as 0 < r < 1 0\lt r\lt 1 0 < r < 1