Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Power Series

A series of the form:

n=0an(xc)n\sum_{n=0}^\infty a_n (x-c)^n

Here:

  • xx - a variable
  • cc - a constant

Convergence of a power series can be checked using ratio test or root test.

Radius of convergence

Maximum radius of xx in where the series converges.

R=sup{r    series converges for  xc<r}R = \sup{\big\{r\;|\; \text{series converges for}\; \lvert x-c \rvert < r\big\}}

The below equation can be used to find RR:

limkak1k=1R\lim_{k\to \infty} |a_k|^{\frac{1}{k}} = \frac{1}{R}

The series may converge or diverge for xc=R\lvert x - c \rvert = R.

Range of convergence

(cR,c+R)(c-R,c+R) is the range of convergence. Aka. interval of convergence. The series may converge or diverge at the endpoints. Endpoints must be checked separately to find out if they must be included in the range of convergence.

The series is:

  • Absolutely converging for xa<R\lvert x-a \rvert \lt R
  • Diverging for xa<R\lvert x-a \rvert \lt R
  • Uniformly converging for xaρ<R\lvert x-a \rvert \le \rho \lt R

Theorem 1

Suppose R(0,)R \in (0,\infty) and 0<p<R0 \lt p \lt R. Then xn\forall x \forall n (xap    sn(x))\lvert x-a \rvert \le p \implies s_n(x)) is uniformly (and absolutely) converging.