Skip to content
Sahithyan's S1
Sahithyan's S1 — Mathematics

Set of Numbers

Sets of numbers

  • Positive integers: Z+={1,2,3,4,...}\mathbb{Z}^{+} = \Set{1,2,3,4,...}.
  • Natural integers: N={0,1,2,3,4,...}\mathbb{N} = \Set{0,1,2,3,4,...}.
  • Negative integers: Z={1,2,3,4,...}\mathbb{Z}^{-} = \Set{-1,-2,-3,-4,...}.
  • Integers: Z=Z{0}Z+\mathbb{Z} = \mathbb{Z}^{-} \cup \Set{0} \cup \mathbb{Z}^{+}.
  • Rational numbers: Q={pq  |  q0p,qZ}\mathbb{Q} = \Set{\frac{p}{q} | q \not = 0 \land p, q \in \mathbb{Z}}.
  • Irrational numbers: limits of sequences of rational numbers (which are not rational numbers)
  • Real numbers: R=QcQ\mathbb{R} = \mathbb{Q}^{c} \cup \mathbb{Q}.

Complex numbers are taught in a separate set of lectures, and not included under real analysis lectures.

Axiomatic definiton of real numbers

Set of real numbers is a set satisfying all these axioms:

Archimedean property

yR+  kZ+  s.t.  1k<y\forall y\in\mathbb{R^+} \; \exists k \in \mathbb{Z}^+ \; \text{s.t.} \; \frac{1}{k} \lt y